

King's Research Portal

DOI: 10.1016/j.jpsychires.2016.02.023

Document Version Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):

Schuch, F. B., Vancampfort, D., Richards, J., Rosenbaum, S., Ward, P. B., & Stubbs, B. (2016). Exercise as a treatment for depression: a meta-analysis adjusting for publication bias. Journal of psychiatric research. 10.1016/j.jpsychires.2016.02.023

Citing this paper

Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights

Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Accepted Manuscript

Exercise as a treatment for depression: a meta-analysis adjusting for publication bias

Felipe Barreto Schuch, Davy Vancampfort, Justin Richards, Simon Rosenbaum, Philip B. Ward, Brendon Stubbs

PII: S0022-3956(16)30038-3

DOI: 10.1016/j.jpsychires.2016.02.023

Reference: PIAT 2831

To appear in: Journal of Psychiatric Research

Received Date: 21 September 2015

Revised Date: 19 February 2016

Accepted Date: 25 February 2016

Please cite this article as: Schuch FB, Vancampfort D, Richards J, Rosenbaum S, Ward PB, Stubbs B, Exercise as a treatment for depression: a meta-analysis adjusting for publication bias, *Journal of Psychiatric Research* (2016), doi: 10.1016/j.jpsychires.2016.02.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Exercise as a treatment for depression: a meta-analysis adjusting for publication bias

Felipe Barreto Schuch^{1,2}, Davy Vancampfort^{5,6}, Justin Richards⁸, Simon Rosenbaum⁷, Philip B. Ward⁷, Brendon Stubbs^{3,4}

- 1. Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós Graduação em Ciências Médicas: Psiquiatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, United Kingdom
- Health Service and Population Research Department, Institute of Psychiatry, King's College London, De Crespigny Park, London, Box SE5 8AF, United Kingdom
- KU Leuven University of Leuven Department of Rehabilitation Sciences, Leuven, Belgium
- KU Leuven University of Leuven, Z.org Leuven, campus Kortenberg, Kortenberg, Belgium
- School of Psychiatry, University of New South Wales, Sydney, Australia and Ingham Institute for Applied Medical Research, Liverpool, Australia
- 8. School of Public Health, Charles Perkins Centre, University of Sydney, Sydney, Australia

Abstract

The effects of exercise on depression have been a source of debate. Meta-analyses have demonstrated a range of effect sizes. Both inclusion criteria and heterogeneity may influence the effect sizes reported. The extent of publication bias is also unknown. Randomized controlled trials (RCTs) were identified from a recent Cochrane review and searches of major electronic databases from 01/2013 to 08/2015. We included RCTs of exercise interventions in people with depression (including those with a diagnosis of major depressive disorder (MDD) or ratings on depressive symptoms), comparing exercise versus any non-active arm. A random effects meta-analysis calculating the standardized mean difference (SMD, 95% confidence interval; CI), meta-regressions and trim and fill and fail-safe n analyses were conducted. Twenty-five RCTs were included comparing exercise versus non-active comparisons groups, including 9 examining participants with MDD. Overall, exercise had a large and significant effect on depression (SMD adjusted for publication bias=1.11 (95% CI 0.79-1.43)) with a failsafe number of 1,057. Most adjusted analyses suggested publication bias leading to an underestimated SMD. Larger effects were found for interventions in MDD, utilising aerobic exercise, at moderate and vigorous intensities interventions, in a supervised and unsupervised format. In MDD, larger effects were found for moderate intensity, aerobic, and interventions supervised by exercise professionals. Exercise has a large and significant antidepressant effect in people with depression (including MDD). Previous meta-analyses may have underestimated the benefits of exercise due to publication bias. Exercise is an evidence-based treatment for depression.

Exercise as a treatment for depression: a meta-analysis adjusting for publication bias

Felipe B. Schuch^{1,2}, Davy Vancampfort^{3,4}, Simon Rosenbaum⁵, Justin Richards⁷, Philip B. Ward⁶,

Brendon Stubbs^{,8,9}

- 1. Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-graduação em Ciências Médicas: Psiquiatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- KU Leuven University of Leuven Department of Rehabilitation Sciences, Leuven, Belgium
- KU Leuven University of Leuven, Z.org Leuven, campus Kortenberg, Kortenberg, Belgium
- Exercise Physiology Department, School of Medical Sciences, UNSW Australia, Sydney, Australia.
- School of Psychiatry, UNSW Australia, Sydney, Australia; Schizophrenia Research Unit, South Western Sydney Local Health District, and Ingham Institute for Applied Medical Research, Liverpool, Australia
- 7. School of Public Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, United Kingdom
- Health Service and Population Research Department, Institute of Psychiatry, King's College London, De Crespigny Park, London, Box SE5 8AF, United Kingdom

Abstract

The effects of exercise on depression have been a source of contentious debate. Metaanalyses have demonstrated a range of effect sizes. Both inclusion criteria and heterogeneity may influence the effect sizes reported. The extent and influence of publication bias is also unknown. Randomized controlled trials (RCTs) were identified from a recent Cochrane review and searches of major electronic databases from 01/2013 to 08/2015. We included RCTs of exercise interventions in people with depression (including those with a diagnosis of major depressive disorder (MDD) or ratings on depressive symptoms), comparing exercise versus control conditions. A random effects meta-analysis calculating the standardized mean difference (SMD, 95% confidence interval; CI), meta-regressions, trim and fill and fail-safe n analyses were conducted. Twenty-five RCTs were included comparing exercise versus control comparison groups, including 9 examining participants with MDD. Overall, exercise had a large and significant effect on depression (SMD adjusted for publication bias=1.11 (95% CI 0.79-1.43)) with a fail-safe number of 1,057. Most adjusted analyses suggested publication bias led to an underestimated SMD. Larger effects were found for interventions in MDD, utilising aerobic exercise, at moderate and vigorous intensities, in a supervised and unsupervised format. In MDD, larger effects were found for moderate intensity, aerobic exercise, and interventions supervised by exercise professionals. Exercise has a large and significant antidepressant effect in people with depression (including MDD). Previous meta-analyses may have underestimated the benefits of exercise due to publication bias. Our data strongly support the claim that exercise is an evidence-based treatment for depression.

Short Title: Exercise as a treatment for depression

Key words: Depression, Exercise, Meta-analysis, Meta-regression, Publication bias, Review.

2

1. Introduction

Depression is a prevalent condition, with a long-life prevalence ranging from 10% to about 20% in different countries (Andrade et al., 2003). Depression is a major cause of disability, responsible for 40.5% of total disability-adjusted life years (DALYs) caused by mental and substance-use disorders (Whiteford et al., 2013).

Physical activity and exercise are suggested as potential treatments for depression, and incorporated in guidelines as a complementary form for illness of mild to moderate severity (Cleare et al., 2015). Several meta-analyses have demonstrated that exercise is an effective treatment for depression, with a pooled standardized mean deviation (SMD) ranging from small (-0.4) (Krogh et al., 2011) to very large (-1.4) (Cooney et al., 2013, Craft and Landers, 1998, Daley, 2008, Danielsson et al., 2013, Josefsson et al., 2014, Krogh et al., 2011, Rethorst et al., 2009, Silveira et al., 2013, Stathopoulou et al., 2006). However, a number of different approaches have been undertaken in prior meta-analyses and uncertainty remains over the magnitude of the effects of exercise on depression.

The 2013 update of the Cochrane review on exercise for depression, provided new data for discussion, showing that when analysis was restricted to the six trials considered of low risk of bias only, the SMD was small and non-significant (Cooney et al., 2013). This review has been criticized, with a particular emphasis on the potential inappropriate selection criteria applied (Ekkekakis, 2015). For example, the review proposed excluding studies that had a control arm with any "active control comparison". However, some studies that compared different exercise arms were included (Krogh et al., 2009), thus clearly precluding a fair comparison. In addition, the review included studies that compared exercise plus well-established treatments versus other well-established forms of treatment, such as pharmacological antidepressants (Blumenthal et al., 1999). As a result, these limitations directly affected the effect size (ES), producing a "shrinkage" effect on the efficacy of exercise for depressive symptoms when

compared to previous meta-analyses (Ekkekakis, 2015). In addition, separate subgroup analyses of studies that assessed the effects of exercise on Beck depression inventory (BDI) (Beck et al., 1961) scores were also criticized regarding the inclusion criteria (e.g. including a trial which used the Hamilton HAM-D (Hamilton, 1967) scale for depression and not the BDI (Blumenthal and Doraiswamy, 2014, Cooney et al., 2014)).

No recent (within the last decade) comprehensive meta-regression analyses have been conducted investigating exercise and depression. Previous meta-analyses (Craft and Landers, 1998, Rethorst et al., 2009) evaluated the moderating role of sample characteristics, such as a diagnosis of major depressive disorder (MDD), which were found to be significant moderators of the antidepressant effects of exercise. However, a number of additional eligible studies have since been published.

Another limitation within the available literature investigating the effects of exercise on depression is that no previous meta-analyses have adjusted for publication bias, which is a considerable threat to the validity of any such synthesis (Ioannidis et al., 2014). Previous studies of psychotherapy for depression have demonstrated that publication bias is evident in RCTs, and effect sizes have consequently been overstated (Cuijpers et al., 2010). It remains unclear, however, if publication bias threatens the validity and interpretation of the exercise as a treatment for depression literature.

The present review sets out to address these limitations. Specific aims were: (1) to establish the updated effects of exercise on depression comparing exercise versus non-active control groups, (2) to identify moderators through meta-regression analyses, including sample characteristics (sex, use of medication and severity of baseline symptoms) and exercise intervention variables (length of the trial, frequency) that could impact the effects of exercise on depression, (3) to investigate, through subgroup and sensitivity analyses, the magnitude of the effects of exercise considering study quality, group format, setting, intensity, type,

supervision, presence of clinical co-morbidities, type of publication and diagnosis of MDD, (4) to assess the influence of publication bias on the reported effects of exercise on depression, and (5) to quantify the strength of the existing evidence by calculating the number of negative studies required to nullify the pooled ES of the analyses performed.

2. Methods

This systematic review is in line with the PRISMA statement (Moher et al., 2009) and the MOOSE guidelines (Stroup et al., 2000).

2.1 Inclusion criteria

Included in this meta-analysis were studies that: (1) Investigated adult participants with a primary diagnosis of MDD according to established criteria (e.g. Research Diagnostic Criteria (RDC) (Spitzer et al., 1978), DSM-IV (American Psychiatric Association, 1994) or ICD-10 (World Health Organization, 1993)) or those with above-threshold depressive symptoms determined by a validated screening measure (e.g. Hamilton Rating Scale for Depression (HAM-D) (Hamilton, 1967), Beck Depression Inventory (BDI) (Beck et al., 1961) or (BDI-II) (Beck et al., 1996)). Studies included using this criterion were those that included participants with at least mild (or equivalent) scores on validated scales, or had the scale revised by a psychiatrist, confirming the presence of depression or, in cases where the scale did not have a validated cut-off, the cut-off used by the author was accepted. Only studies where all participants met criteria for depression were included in the analyses (e.g. studies that presented a subsample of depressed participants were not included). Studies including people with depressive disorders other than MDD, such as dysthymia, were also included. (2) Measured depressive symptoms pre- and post-intervention, or reported a mean change and standard deviation using a validated measure (e.g. HAM-D, BDI). (3) Were RCTs investigating exercise, as defined by Caspersen (1985) as planned, structured, repetitive and purposive physical activity, in the sense that improvement or maintenance of one or more components of physical fitness was an objective, in the active arm of the trial. Trials that used yoga, tai chi or qi going, were not included since such mind-body activities also comprise a core set of behavioral techniques such as, but not limited to, deep breathing, meditation/mind-fullness and self-awareness (Larkey et al., 2009). These techniques are known to have an influence on depressive

symptoms (Goyal et al., 2014). Moreover, previous studies found significant heterogeneity in trials incorporating these mind-body approaches when compared with conventional aerobic or strength exercises (Bridle et al., 2012). (4) Included a non-active control group such as: usual-care, wait-list control conditions, placebo pills or other social activities. Trials that included any other exercise intervention (such as stretching or low-dose exercise) for comparison or other structured active treatment comparisons (such as pharmacotherapy, electroconvulsive therapy [ECT] or psychotherapy) were excluded. (5) Were published in peer-reviewed journal articles or as part of a dissertation.

2.2 Information sources and searches

Articles were identified in a two-step strategy. First, three authors (BS, FS, SR) reviewed all articles identified (both included and excluded with reasons) by the recent Cochrane review on exercise for depression (Cooney et al., 2013). Second, three independent reviewers (BS, FS, SR) searched Academic Search Premier, MEDLINE, Psychology and Behavioral Sciences Collection, PsycINFO, SPORTDiscus, CINAHL Plus and Pubmed without language restrictions from January 2013 until August 1st, 2015, using the key words: ((exercis* OR aerobic* OR running OR jogging OR walk* OR hiking OR swim* OR aquatic* OR cycling OR bicycl* OR strength* and activit* OR fitness OR train* OR "physical medicine" OR resistance OR lift*) AND (depression OR dysthymia)). In addition, reference lists of all eligible articles of recent reviews investigating the effectiveness of exercise versus control were screened to identify potentially eligible articles (Cooney et al., 2013, Josefsson et al., 2014, Silveira et al., 2013). Dissertations and studies from the same center were identified to avoid sample overlap. In case of overlap the most recent and/or most extensively reported version of study was included.

2.3 Study selection

Three authors (BS, FS, SR) determined potentially eligible articles meeting the inclusion criteria. After removal of duplicates, two independent reviewers screened all potentially eligible articles using the titles and abstracts. These authors then applied the eligibility criteria, after obtaining the full texts, and generated a final list of included articles through consensus.

2.4 Outcomes

Our primary outcome of interest was the mean change in depressive symptoms in the exercise group, assessed by any validated scale, from baseline to post-intervention, in comparison with the mean change of the control group, calculated as the SMD together with 95% confidence intervals (CIs). If an author reported the results of two outcome measures meeting our criteria (i.e. mean change/ pre and posttest change in depressive symptoms according to two different measures), we used the primary outcome chosen by the author. If this was not clear, we used the HAMD or the BDI in order to increase homogeneity in our results. These outcome measures were also prioritized since they are commonly used in the exercise and depression literature (Cooney et al 2013). For studies reporting the effects of two or more different exercise groups (home-based and supervised, aerobic and anaerobic, high and low dose), the arm reporting the greater ES was included in the analysis.

2.5 Data Extraction

Two authors (FS, SR) independently extracted data using a data extraction form, including: sample (number of participants, % of women, % of participants taking antidepressants, presence of clinical co-morbidities and severity of baseline symptoms), exercise (length of the trial, intensity of intervention [according to the American College of Sports Medicine (ACSM) (Garber et al., 2011) classification of intensity], weekly frequency, type and supervision [if exercise was supervised and if supervision was provided by exercise professionals, such as physiotherapists, physical educators, exercise physiologists etc.]) and methodological factors (study quality, instruments used for diagnosis and symptom assessment, clinical setting, and

type of document). Finally, we extracted the pre- and post-test means and standard deviations (SD) of the depressive symptom rating scales for the exercise and the control group (primary outcome). If this was not available, we used the mean change and SD from pre- and post-test, if reported within the study.

2.6 Risk of bias and quality assessment

Three authors (FS, JR, BS) assessed studies on the presence of high, low or unclear risk of bias according to the Cochrane Handbook definition (Higgins and Green, 2011). The risk of bias was assessed by considering the following factors: random sequence generation, allocation concealment, blinding of participants, blinding of those delivering the intervention, blinding of outcome assessors, incomplete data outcome, selective reporting or others. To be considered a low risk of bias, studies had to involve adequate allocation concealment AND had to involve the analysis of outcome data according to intention-to-treat principles AND had to have blinding of outcome assessors. The criteria used for risk of bias assessment was modeled on that employed in a previous meta-analysis (Cooney et al., 2013).

2.7 Meta-analysis

We used a random effects meta-analysis due to expected heterogeneity. The SMD and 95% confidence intervals (CIs) were used as the ES measure. The meta-analysis was conducted using the following procedure. First, we calculated the SMD statistic, together with 95% CIs, to establish the effects of exercise on depression across all studies using Comprehensive Meta-Analysis software (CMA; Version 3, Biostat, Englewood, New Jersey). We subsequently conducted a sensitivity analysis computing the effects of exercise on depression in high quality studies only. Further, we conducted meta-regression analyses to investigate the potential moderators of the antidepressant effects of exercise. Potential moderators were chosen a-priori, according to the previous literature, and included: sex, age, use of medication, length of

the trial weekly frequency and the rate of dropout. Next, we conducted subgroup analyses to compare exercise response according to depression diagnosis (MDD [studies that included only patients with MDD and used a diagnostic instrument based on Research Domain Criteria (RDC), DSM or ICD criteria] versus depressive symptoms), study setting (inpatient, outpatient, mixed), type of publication (peer review article or dissertation), high quality (low risk of bias) versus low quality, presence of other clinical comorbidities (yes or no), supervision (yes or no), the qualification of the professional supervising the exercise sessions, exercise type (aerobic, resistance, mixed) and exercise intensity. Heterogeneity was assessed with the Cochran Q and I² statistics for each analysis (Higgins et al., 2003). Publication bias was assessed with a visual inspection of funnel plots and with the Begg-Mazumdar Kendall's tau (Begg and Mazumdar, 1994) and Egger bias test (Egger et al., 1997). In addition, we conducted a trim and fill adjusted analysis (Duval and Tweedie, 2000) to remove the most extreme small studies from the positive side of the funnel plot, and recalculated the ES at each iteration, until the funnel plot was symmetric about the (new) ES. Finally, the fail safe number of negative studies that would be required to nullify (i.e. make p>0.05) the ES was calculated (Rosenthal, 1979).

3. Results

3.1 Search results

In the first stage of the search strategy, 35 RCTs were identified from a previous review (Cooney et al., 2013). In the second stage, following the removal of duplicates, 819 potentially relevant articles were identified. At the full text review stage, we reviewed 76 articles (N=35 from stage 1 and 41 from our stage 2 searches) and 45 were excluded with reasons (details summarized in figure 1). There were 30 full texts that met the eligibility criteria (Blumenthal et al., 2007, Brenes et al., 2007, Danielsson et al., 2014, Doyne et al., 1987, Epstein, 1986, Gary et al., 2010, Hallgren et al., 2015, Hemat-Far et al., 2012, Hess-Homeier, 1981, Hoffman et al., 2009, Huang et al., 2015, Kerling et al., 2015, Martinsen, 1987, Mather et al., 2002, McNeil et al., 1991, Mota-Pereira et al., 2011, Mutrie, 1989, Nabkasorn et al., 2006, Oertel-Knöchel et al., 2014, Orth, 1979, Pfaff et al., 2014, Pilu et al., 2007, Schuch et al., 2011, Setaro, 1985, Shahidi et al., 2011, Sims et al., 2009, Singh et al., 1997, Singh et al., 2005, Veale et al., 1992, Williams and Tappen, 2008). Of these, 25 (Blumenthal et al., 2007, Brenes et al., 2007, Danielsson et al., 2014, Doyne et al., 1987, Epstein, 1986, Gary et al., 2010, Hallgren et al., 2015, Hemat-Far et al., 2012, Huang et al., 2015, Kerling et al., 2015, McNeil et al., 1991, Mota-Pereira et al., 2011, Mutrie, 1989, Nabkasorn et al., 2006, Oertel-Knöchel et al., 2014, Orth, 1979, Pilu et al., 2007, Schuch et al., 2011, Setaro, 1985, Shahidi et al., 2011, Sims et al., 2009, Singh et al., 1997, Singh et al., 2005, Veale et al., 1992, Williams and Tappen, 2008) provided complete data to enable inclusion within our meta-analysis. One of the studies included in the Cooney et al (2013) review, reported preliminary data from a trial (Schuch et al., 2011) and this data was replaced with the final updated results from that trial (Schuch et al., 2015).

Insert figure 1 here

3.1.1 Characteristics of included trials and participants

Across the 25 studies, 1,487 adults with depression were included, of whom 757 and 730 were randomised to exercise and control conditions respectively. The mean age ranged from 18.4 to 76.4 years and the percentage of females ranged from 17% to 100%. Overall, 9 studies contained patients with a confirmed diagnosis of MDD, and a further three included participants with depression and participants with additional co-morbid diagnoses, such as, cardiovascular or neurological diseases (Gary et al., 2010, Sims et al., 2009, Williams and Tappen, 2008). There were two studies (Singh et al., 1997 & 2005) that included participants with depression (N=22), were published in peer-reviewed journals (N=21), and included people without reported clinical co-morbidities (N=21). The most commonly used measures of depressive symptoms were the HAM-D (N=7), BDI (N=7), or MADRS (N=3). Participant details and symptom measures are presented in table 1. Full details of other characteristics can be found in supplementary table 1.

3.1.2 Risk of bias

Four studies were judged to be of good methodological quality and at low risk of bias (Blumenthal et al., 2007, Danielsson et al., 2014, Hallgren et al., 2015, Schuch et al., 2015) and the remaining 21 were low quality (high risk of bias). Full details of the risk of bias are presented in supplementary table 2.

Insert table 1 here

3.2 Main analysis

Data pooled from 25 studies showed a large significant improvement favoring exercise (SMD= 0.98, 95% CI 0.68 to 1.28, p<0.001, Q=135, p<0.01) (figure 2). The Begg-Mazumdar Kendall's Tau" (=-0.41, p=0.001) and the Egger tests indicated publication bias (intercept =2.21, p=0.004). Therefore, the ES was recalculated using Duval and Tweedie's trim and fill method with nine studies being adjusted and a new ES of 1.11 (95% CI 0.79 to 1.43, p<0.001). The fail-safe number of additional negative studies required to nullify the significance of the main analysis was of 1,057 studies with negative results. Means, standard deviations and sample sizes of each study are summarized in the supplementary table 3.

Insert figure 2 here

All of the subgroup analyses are presented in table 2. Briefly, studies including people with MDD presented a larger decrease in symptoms when compared to studies in samples without a clinical diagnosis of MDD (SMD=1.135, 95% CI 0.46 to 1.81, p<0.001). Studies using aerobic exercise (SMD=1.04, 95% CI 0.65 to 1.43, p<0.001), with moderate (SMD=1.33, 95% CI 0.46 to 2.19, p=0.003) or vigorous intensities (SMD=1.34, 95% CI 0.43 to 2.24, p=0.004), with a mixed supervised/unsupervised format (SMD=3.01, 95% CI -0.61 to 1.97, p<0.001) and supervised by qualified physical exercise professionals (SMD=1.26, 95% CI 0.54 to 1.97, p<0.001) were associated with larger antidepressant effects.

3.2.1 Adjustment of publication bias and fail safe number of studies

Several of the meta-analyses were adjusted for publication bias, with most original analyses being underestimates due to publication bias. For instance, studies in MDD, study quality (both

low and high) and group exercise all had an increased ES after adjustment (see table 2). The fail safe number of studies provided further evidence of magnitude of exercise ES, with a higher number of negative studies required to nullify the ES in outpatients (N=911), low quality studies (N= 589), aerobic exercise (N= 543) and supervised exercise (N=450). Full details are summarised in table 2.

Insert table 2 here

3.3 Meta-regression of antidepressant effects in main analysis

Mean age, gender, dropout, use of antidepressant medications, baseline depressive symptoms, frequency of exercise sessions and length of the trial did not moderate the antidepressant effect of exercise. A summary of all meta-regression analyses is presented in table 3.

Insert table 3 here

3.4 Sensitivity analyses

3.4.1 Exercise effects on people with MDD only

All analyses investigating exercise in MDD are presented in table 4. Briefly, a larger pooled SMD was evident in low quality studies (SMD=1.32, 95% CI 0.22 to 2.42, p=0.001), for RCTS without a group format (SMD=2.58, 95% CI 0.54 to 4.62, p=0.013), in outpatients (SMD=1.51, 95% CI 0.45 to 1.57, p=0.005), and when the intervention was supervised by qualified exercise professionals (SMD=1.53, 95% CI 0.51 to 2.59, p=0.003). There were no studies using strength or mixed interventions. No studies were conducted in a sample with major clinical comorbidities.

3.4.2 Adjustment of publication bias and fail safe number of studies

Adjusting for publication bias, studies of high methodological quality, in inpatients, and that used aerobic exercise interventions had larger effects sizes. The fail-safe number of studies in RCTs composed exclusively of people with diagnosed MDD was 84 for RCTs in outpatient settings and 132 in RCTs using aerobic exercise RCTs. Full details are summarised in table 4.

Table 4 here

3.4.3 Meta regression of moderators of control group response in MDD

Mean age, gender, dropout, use of antidepressant, baseline depressive symptoms, frequency of exercise and length of the trial did not moderate the antidepressant effect of exercise. The full meta-regression data can be found in table 3.

3.5 Mean change in depressive symptoms

Data from 25 studies found an improvement of -4.52 points (95% CI 2.03 to 7.01, p<0.001) and of -6.46 (95% CI 4.18 to 8.41, p<0.001) points on the HAM-D and the BDI scales, respectively. A sensitivity analysis including only studies in MDD established a mean improvement in depressive symptoms of -5.07 points (95% CI 1.37 to 8.78, p =0.007) in the HAM-D.

4. Discussion

This meta-analysis found large antidepressant effects of exercise on depression when compared to non-active control conditions (e.g. studies that did not compare exercise versus alternative treatments). The anti-depressant effect of exercise was higher for studies that included participants diagnosed with MDD. Moreover, our adjusted analyses demonstrate that publication bias generally resulted in an underestimation of the positive effects of exercise. Larger effect sizes were found for outpatients, in samples without other clinical co-morbidities, and when supervised by qualified exercise professionals, both in the main analysis and when restricted to MDD participants alone.

Overall, our results provide robust evidence that exercise can be considered an evidencebased treatment for the management of depression. The fail safe assessment suggests that more than a thousand studies with negative results would be needed to nullify the effects of exercise on depression. The large effect of exercise on depression found in our meta-analysis differs in magnitude, being larger than the effects found in a recent Cochrane review (Cooney et al., 2013). The differences in the magnitudes of the effects are mainly due to three factors: (1) the inclusion criteria, (2) the statistical test used to evaluate the ES, and (3) the inclusion of more recent trials. In the present review, we removed the studies without true control groups that were included in Cooney review (Blumenthal et al., 1999, Fremont and Craighead, 1987). These studies compared exercise plus an established treatment versus an established treatment and were included by Cooney et al., (2013) using the prerogative that one can add and subtract therapeutic efficacies in an algebraic fashion (e.g. exercise + selective serotonin reuptake inhibitor (SSRI)/cognitive behavioural therapy (CBT) - SSRI/CBT = exercise) (Ekkekakis, 2015). However, this argument is flawed since exercise may potentially overlap, at least in part, with some of the potential mechanisms of SSRI (e.g. increase on neurotrophic markers) and CBT (e.g. improved perceived coping ability and self-appraisal) (Ekkekakis, 2015). Second, we calculated the ES based on the mean change (baseline to endpoint) of symptoms of control

and exercise groups, not only the endpoint measure (Cooney et al., 2013). This approach is particularly important when pooling studies that have different baseline values for the main outcome (Mota-Pereira et al., 2011, Sims et al., 2009, Veale et al., 1992). Third, one trial that was included in the Cooney et al., (2013) review contained preliminary results from one RCT, which were replaced by the published final results in our updated meta-analysis (Schuch et al., 2015) and a further five new trials were included. The inclusion of these recent trials may have influenced our findings, particularly our analyses of high quality studies, since three of the new studies were classified as being of high quality (Danielsson et al., 2014, Hallgren et al., 2015, Schuch et al., 2015). The inclusion of these recent trials led to the change from "small and nonsignificant" effects of high quality trials in Cooney review (Cooney et al., 2013) to large and significant effects in the present review. The magnitude of those effects was larger in studies in MDD than in samples where clinical diagnoses were not stated. It should be noted that samples with clinical diagnoses have greater baseline depression scores and consequently more potential to achieve greater reductions in symptoms. Unlike the larger effects in samples diagnosed with MDD, the effect of exercise in samples without a clinical diagnosis of MDD was moderate.

Both aerobic and mixed exercises were associated with large effects across all studies. In clinical samples, only aerobic exercises had large and significant effects on depression, while mixed interventions had non-significant effects. This finding deserves further investigation since no RCT investigating the effects of resistance exercise in samples comprised entirely of participants with MDD was identified. Moderate and vigorous intensity exercises where shown to be more effective than light to moderate intensity exercises. However, this finding needs to be interpreted with caution, since it is based on a small number of studies.

Supervised interventions had the largest effects, in our main analysis. This is in line with previous reviews on exercise and lifestyle interventions (Ward et al., 2015). Exercise

17

supervised by professionals with relevant training, including physical educators, physiotherapists and exercise physiologists, was associated with the greatest improvements. Additionally, exercise supervised by other health professionals appears to have a large effect although this did not reach statistical significance. This result, added to previous findings of lower drop-out rate in interventions delivered by exercise professionals in people with depression (Stubbs et al., 2016) highlighting the importance of adequately trained professionals providing exercise interventions. Therefore, this finding has a practical implication in the design of further trials, as well as providing evidence for policy makers to consider including competent exercise professionals in mental health care treatment teams (NICE, 2009).

Unlike psychotherapy RCTs for depression (Cuijpers et al., 2010), the effects of exercise studies in depression appear to have been underestimated due to publication bias. Previous metaanalyses have largely ignored the potential impact of publication bias, and none to our knowledge have re-calculated the effect sizes accounting for publication bias. These analyses confirm and strengthen the evidence-base regarding the benefits of exercise in people with depression.

Lastly, we found a reduction of about 5 points in HAM-D scale, and greater than 6 points in the BDI scale, in the overall sample and in MDD patients considered separately. This reduction is above the clinically significant reduction of three points in the HAM-D as formulated in the NICE guidelines (NICE, 2009).

In summary, compared to non-active interventions, exercise has a large and significant antidepressant effect, and it would require over 1,000 negative studies to nullify this result. Publication bias is evident in exercise RCTs, but this has largely resulted in an underestimation of the ES of exercise. Our novel ES, calculated adjusting for publication bias, confirms and strengthen the case that exercise is an evidence-based treatment for depression.

18

References:

Andrade L, Caraveo-Anduaga JJ, Berglund P, Bijl RV, De Graaf R, Vollebergh W, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res. 2003;12:3-21. Association AP. Diagnostic and Statistical Manual of Mental Disorders. Fourth ed. Washington D.C.1994.

Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio. 1996.

Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561-71.

Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088-101.

Blumenthal JA, Babyak MA, Doraiswamy PM, Watkins L, Hoffman BM, Barbour KA, et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med. 2007;69:587-96.

Blumenthal JA, Babyak MA, Moore KA, Craighead WE, Herman S, Khatri P, et al. Effects of exercise training on older patients with major depression. Arch Intern Med. 1999;159:2349-56.

Blumenthal JA, Doraiswamy P. EXercise to combat depression. JAMA. 2014;312:2166-7.

Brenes GA, Williamson JD, Messier SP, Rejeski WJ, Pahor M, Ip E, et al. Treatment of minor depression in older adults: a pilot study comparing sertraline and exercise. Aging Ment Health. 2007;11:61-8.

Bridle C, Spanjers K, Patel S, Atherton NM, Lamb SE. Effect of exercise on depression severity in older people: systematic review and meta-analysis of randomised controlled trials. Br J Psychiatry. 2012;201:180-5.

Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports. 1985;100:126.

Cleare A, Pariante C, Young A, Anderson I, Christmas D, Cowen P, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. Journal of Psychopharmacology. 2015:0269881115581093.

Cooney G, Dwan K, Mead G. Exercise for depression. JAMA. 2014;311:2432-3.

Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, et al. Exercise for depression. Cochrane Database Syst Rev. 2013;9:CD004366. Craft LL, Landers DM. The effects of exercise on clinical depression and depression resulting from mental illness: A meta-regression analysis. Journal of Sport & Exercise Psychology. 1998;20:339–57.

Cuijpers P, Smit F, Bohlmeijer E, Hollon SD, Andersson G. Efficacy of cognitive–behavioural therapy and other psychological treatments for adult depression: meta-analytic study of publication bias. The British Journal of Psychiatry. 2010;196:173-8.

Daley A. Exercise and depression: A review of reviews. Journal of Clinical Psychology in Medical Settings. 2008;15:140-7.

Danielsson L, Noras AM, Waern M, Carlsson J. Exercise in the treatment of major depression: A systematic review grading the quality of evidence. Physiotherapy Theory and Practice. 2013;29:573-85.

Danielsson L, Papoulias I, Petersson EL, Carlsson J, Waern M. Exercise or basic body awareness therapy as add-on treatment for major depression: A controlled study. Journal of Affective Disorders. 2014;168:98-106.

Doyne EJ, Ossip-Klein DJ, Bowman ED, Osborn KM, McDougall-Wilson IB, Neimeyer RA. Running versus weight lifting in the treatment of depression. Journal of Consulting and Clinical Psychology. 1987;55:748.

Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455-63.

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical Research Ed). 1997;315:629-34.

Ekkekakis P. Honey, I shrunk the pooled SMD! Guide to critical appraisal of systematic reviews and meta-analyses using the Cochrane review on exercise for depression as example. Mental Health and Physical Activity. 2015;8:21-36.

Epstein D. Aerobic Activity Versus Group Cognitive Therapy: an Evaluative Study of Contrasting Interventions for the Alleviation of Clinical Depression. Reno: University of Nevada; 1986.

Fremont J, Craighead LW. Aerobic exercise and cognitive therapy in the treatment of dysphoric moods. Cognitive Therapy and Research. 1987;11:241-51.

Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Medicine & Science in Sports & Exercise. 2011;43:1334-59 10.249/MSS.0b013e318213fefb.

Gary RA, Dunbar SB, Higgins MK, Musselman DL, Smith AL. Combined exercise and cognitive behavioral therapy improves outcomes in patients with heart failure. Journal of psychosomatic research. 2010;69:119-31.

Goyal M, Singh S, Sibinga EM, Gould NF, Rowland-Seymour A, Sharma R, et al. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA internal medicine. 2014;174:357-68.

Hallgren M, Kraepelien M, Öjehagen A, Lindefors N, Zeebari Z, Kaldo V, et al. Physical exercise and internet-based cognitive behavioural therapy in the treatment of depression: randomised controlled trial. The British Journal of Psychiatry. 2015:bjp. bp. 114.160101.

Hamilton MAX. DEVELOPMENT OF A RATING SCALE FOR PRIMARY DEPRESSIVE ILLNESS. British Journal of Social & Clinical Psychology. 1967;6:278-96.

Hemat-Far A, Shahsavari A, Roholla Mousavi S. Effects of selected aerobic exercises on the depression and concentrations of plasma serotonin in the depressed female students aged 18 to 25. Journal of Applied Research in Clinical and Experimental Therapeutics. 2012;12:47.

Hess-Homeier MJ. A comparison of Beck's cognitive therapy and jogging as treatments for depression1981.

Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version. In: Collaboration TC, editor.2011.

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical Research Ed). 2003;327:557-60.

Hoffman BM, Babyak MA, Sherwood A, Hill EE, Patidar SM, Doraiswamy PM, et al. Effects of aerobic exercise on sexual functioning in depressed adults. Mental Health and Physical Activity. 2009;2:23-8.

Huang T-T, Liu C-B, Tsai Y-H, Chin Y-F, Wong C-H. Physical fitness exercise versus cognitive behavior therapy on reducing the depressive symptoms among community-dwelling elderly adults: A randomized controlled trial. International Journal of Nursing Studies. 2015.

Ioannidis JP, Munafo MR, Fusar-Poli P, Nosek BA, David SP. Publication and other reporting biases in cognitive sciences: detection, prevalence, and prevention. Trends in cognitive sciences. 2014;18:235-41.

Josefsson T, Lindwall M, Archer T. Physical exercise intervention in depressive disorders: Metaanalysis and systematic review. Scandinavian Journal of Medicine & Science in Sports. 2014;24:259-72.

Kerling A, Tegtbur U, Gützlaff E, Kück M, Borchert L, Ates Z, et al. Effects of adjunctive exercise on physiological and psychological parameters in depression: A randomized pilot trial. Journal of Affective Disorders. 2015;177:1-6.

Krogh J, Nordentoft M, Sterne JA, Lawlor DA. The effect of exercise in clinically depressed adults: systematic review and meta-analysis of randomized controlled trials. J Clin Psychiatry. 2011;72:529-38.

Krogh J, Saltin B, Gluud C, Nordentoft M. The DEMO trial: a randomized, parallel-group, observer-blinded clinical trial of strength versus aerobic versus relaxation training for patients with mild to moderate depression. J Clin Psychiatry. 2009;70:790-800.

Larkey L, Jahnke R, Etnier J, Gonzalez J. Meditative movement as a category of exercise: implications for research. J Phys Act Health. 2009;6:230-8.

Martinsen EW. The role of aerobic exercise in the treatment of depression. Stress Medicine. 1987;3:93-100.

Mather AS, Rodriguez C, Guthrie MF, McHARG AM, Reid IC, McMURDO ME. Effects of exercise on depressive symptoms in older adults with poorly responsive depressive disorder Randomised controlled trial. The British Journal of Psychiatry. 2002;180:411-5.

McNeil JK, LeBlanc EM, Joyner M. The effect of exercise on depressive symptoms in the moderately depressed elderly. Psychology and aging. 1991;6:487.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

Mota-Pereira J, Silverio J, Carvalho S, Ribeiro JC, Fonte D, Ramos J. Moderate exercise improves depression parameters in treatment-resistant patients with major depressive disorder. J Psychiatr Res. 2011;45:1005-11.

Mutrie N. Exercise as a treatment for depression within a national health service: Microform Publications, College of Human Development and Performance, University of Oregon; 1989.

Nabkasorn C, Miyai N, Sootmongkol A, Junprasert S, Yamamoto H, Arita M, et al. Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. European journal of public health. 2006;16:179-84.

NICE. Depression: the Treatment and Management of Depression in Adults. 2009.

Oertel-Knöchel V, Mehler P, Thiel C, Steinbrecher K, Malchow B, Tesky V, et al. Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. European archives of psychiatry and clinical neuroscience. 2014;264:589-604.

organisation Wh. The ICD-10 Classification of Mental and Behavioural Disorders – Diagnostic Criteria for Research. 1993.

Orth DK. Clinical Treatments for Depression. Morgantown: West Virginia University; 1979.

Pfaff JJ, Alfonso H, Newton RU, Sim M, Flicker L, Almeida OP. ACTIVEDEP: a randomised, controlled trial of a home-based exercise intervention to alleviate depression in middle-aged and older adults. British journal of sports medicine. 2014;48:226-32.

Pilu A, Sorba M, Hardoy MC, Floris AL, Mannu F, Seruis ML, et al. Efficacy of physical activity in the adjunctive treatment of major depressive disorders: preliminary results. Clin Pract Epidemiol Ment Health. 2007;3:8.

Rethorst CD, Wipfli BM, Landers DM. The antidepressive effects of exercise: a meta-analysis of randomized trials. Sports Med. 2009;39:491-511.

Rosenthal R. The file drawer problem and tolerance for null results. Psychological bulletin. 1979;86:638.

Schuch FB, Vasconcelos-Moreno MP, Borowsky C, Fleck MP. Exercise and severe depression: preliminary results of an add-on study. J Affect Disord. 2011;133:615-8.

Schuch FB, Vasconcelos-Moreno MP, Borowsky C, Zimmermann AB, Rocha NS, Fleck MP. Exercise and severe major depression: effect on symptom severity and quality of life at discharge in an inpatient cohort. J Psychiatr Res. 2015;61:25-32.

Setaro JL. Aerobic exercise and group counseling in the treatment of anxiety and depression: University Microfilms International/UMI; 1985.

Shahidi M, Mojtahed A, Modabbernia A, Mojtahed M, Shafiabady A, Delavar A, et al. Laughter yoga versus group exercise program in elderly depressed women: a randomized controlled trial. International journal of geriatric psychiatry. 2011;26:322-7.

Silveira H, Moraes H, Oliveira N, Coutinho ES, Laks J, Deslandes A. Physical exercise and clinically depressed patients: a systematic review and meta-analysis. Neuropsychobiology. 2013;67:61-8.

Sims J, Galea M, Taylor N, Dodd K, Jespersen S, Joubert L, et al. Regenerate: assessing the feasibility of a strength-training program to enhance the physical and mental health of chronic post stroke patients with depression. International journal of geriatric psychiatry. 2009;24:76-83.

Singh NA, Clements KM, Fiatarone MA. A randomized controlled trial of progressive resistance training in depressed elders. J Gerontol A Biol Sci Med Sci. 1997;52:M27-35.

Singh NA, Stavrinos TM, Scarbek Y, Galambos G, Liber C, Fiatarone Singh MA. A randomized controlled trial of high versus low intensity weight training versus general practitioner care for clinical depression in older adults. J Gerontol A Biol Sci Med Sci. 2005;60:768-76.

Spitzer RL, Endicott J, Robins E. Research diagnostic criteria: Rationale and reliability. Archives of General Psychiatry. 1978;35:773-82.

Stathopoulou G, Powers MB, Berry AC, Smits JAJ, Otto MW. Exercise interventions for mental health: A quantitative and qualitative review. Clinical Psychology: Science and Practice. 2006;13:179-93.

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama. 2000;283:2008-12.

Stubbs B, Vancampfort D, Rosenbaum S, Ward PB, Richards J, Soundy A, et al. Dropout from exercise randomized controlled trials among people with depression: A meta-analysis and meta regression. Journal of Affective Disorders. 2016;190:457-66.

Veale D, Le Fevre K, Pantelis C, de Souza V, Mann A, Sargeant A. Aerobic exercise in the adjunctive treatment of depression: a randomized controlled trial. J R Soc Med. 1992;85:541-4.

Ward MC, White DT, Druss BG. A meta-review of lifestyle interventions for cardiovascular risk factors in the general medical population: lessons for individuals with serious mental illness. J Clin Psychiatry. 2015;76:e477-86.

Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575-86.

Williams C, Tappen R. Exercise training for depressed older adults with Alzheimer's disease. Aging and Mental Health. 2008;12:72-80.

Acknoledgements:

The authors would like to thanks to Coordenação de aperfeicoamento de pessoal de nível superior (CAPES).

Table 1 Summary of included studies

Study	Sample size		Age		Ger	Gender		Antidepressant use		Length of the trial	Diagnosis	Thesis or Peer- reviewed Article
	Exercise (n=)	Control (n=)	Exercise (mean or range)	Control (mean or range)	Exercise (% females)	Control (% females)	Exercise (% taking)	Control (% taking)				
Blumenthal 2007	51	49	52	52	75	77	0	0	HAM-D	16	MDD	Peer- reviewed
Brenes 2007	14	12	73.5	73.9	64	50	0	0	HAM-D	16	Depressive symptoms	Peer- reviewed
Danielsson 2014	22	20	44.7	46.3	73	80	100	100	MADRS	10	MDD	Peer- reviewed
Doyne 1987	14	11	28.58	29.46	100	100	0	0	BDI	8	Depressive symptoms	Peer- reviewed
Epstein 1986	7	10	24-60	24-60	?	?	?	?	BDI	8	MDD	Thesis
Gary 2010	20	15	?	?	?	?	?	?	HAM-D	12	Depressive symptoms	Peer- reviewed
Hallgreen 2015	317	312	18-71	18-71	?	?	31	24	MADRS	12	Depressive symptoms	Peer- reviewed
Hemat-far 2012	10	10	18-25	18-25	100	100	?	?	BDI	8	Depressive symptoms	Peer- reviewed
Huang 2015	19	20	76.42	75.85	57.9	55	0	0	GDS-15	12	Depressive symptoms	Peer- reviewed
Kerling 2015	22	20	44.2	40.9	45	30	77	75	MADRS	6	MDD	Peer- reviewed
Mcneil 1991	10	10	?	?	?	?	0	0	BDI	6	Depressive symptoms	Peer- reviewed
Mota- pereira 2011	19	11	48.68	45.33	57.9	80	100	100	HAM-D	12	MDD	Peer- reviewed
Mutrie 1988	9	7	?	?	?	?	0	0	BDI	4	Depressive	Thesis

											symptoms	
Nabkasorn 2005	21	28	18.7	18.8	100	100	0	0	CES-D	8	Depressive symptoms	Peer- reviewed
Oertel- Knoechel 2014	4	4	36.6	42.2	50	37.5	100	100	BDI-II	4	MDD	Peer- reviewed
Orth 1979	3	2	17-56	17-56	?	?	?	?	DACL	4	Depressive symptoms	Thesis
Pilu 2007	10	20	40-60	40-60	100	100	100	100	HAM-D	32	MDD	Peer- reviewed
Schuch 2015	25	25	38.8	41.76	72	76	Change during the trial	Change during the trial	HAM-D	3	MDD	Peer- reviewed
Setaro 1985	25	25	18-35	18-35	?	?	0	0	ΜΜΡΙ	10	Depressive symptoms	Thesis
Shahidi 2011	20	20	65.7	68.4	100	100	?	?	GDS	?	Depressive symptoms	Peer- reviewed
Sims 2009	23	21	67.95	66.27	39	41	?	?	PHQ-9	10	Depressive symptoms	Peer- reviewed
Singh 1997	17	15	70	72	70.5	53.3	0	0	BDI	10	MDD + dysthimia	Peer- reviewed
Singh 2005	18	19	69	69	55	50	0	42	HAM-D	8	MDD + dysthimia	Peer- reviewed
Veale 1992	36	29	?	?	?	?	45	34	BDI	12	MDD	Peer- reviewed
Williams 2008	17	12	71-101	71-101	?	?	?	?	CSDD	16	Depressive symptoms	Peer- reviewed

BDI = Beck Depression Inventory, CSDD = Cornel Scale for Depression in Dementia, GDS = Geriatric Depression Scale, HAM-D = Hamilton Depressive Disorder, MADRS = Montgomery-Asberg Depression Rating Scale, MDD = Major Depressive Disorder, MMPI = Minnesota Multhipasic Personality Inventory, PHQ-9 = Patient Health Questionnaire, SCL = Symptom Checklist Table 2: Subgroup meta-analysis in all studies

Analysis	Number of RCTs		Meta	-analysis		Heterogeneity	Trim and fill effect size (95% CI) [adjusted studies]	Classic fail safe N	
		SMD	95% CI		P value		•		
Main analysis									
Exercise x control	25	0.987	0.686	1.281	< 0.0001	82.10	1.11 (0.79-1.43) [2]	1,057	
Depression classification						A			
MDD	9	1.139	0.464	1.814	= 0.0001	88.54	1.23 (0.569 – 2.08) [1]	132	
Depressive symptoms	14	0.801	0.489	1.112	< 0.0001	68.47	Unchanged	145	
Study quality							-		
High quality	4	0.882	0.221	1.544	= 0.009	90.15	1.21 (0.35-2.08) [1]	56	
Low quality	21	1.033	0.657	1.408	< 0.0001	79.25	1.40 (0.95-1.84) [5]	614	
Study setting									
Outpatient/community	21	1.123	0.770	1.473	< 0.0001	84.65	Unchanged	911	
Inpatient	3	0.553	0.167	0.938	0.005	0	0.72 (0.41-1.03) [2]	3	
Nursing homes	1	-0.022	-0.761	0.717	0.953	0	N/A	N/A	
Intensity of exercise									
Light to moderate	3	0.586	-0.019	1.190	0.058	32.96	Unchanged	2	
Moderate	6	1.330	0.463	2.197	0.003	83.37	1.86 (0.86-2.68)[2]	63	
Vigorous	7	1.342	0.437	2.246	0.004	91.09	Unchanged	102	
Evercise type									
Aerobic only	19	1 045	0.653	1 437	< 0.0001	80 97	1 11 (0 71-1 52) [1]	543	
Resistance only	3	1 152	-0.50	2 801	= 0.174	93 40	Unchanged	11	
Mixed	3	0.659	0.248	1.069	= 0.002	48.39	Unchanged	27	
Group exercise	5	0.055		1.005	0.001	10100	enenangea	_,	
Yes	13	0.924	0.513	1.336	< 0.0001	76.10	Unchanged	227	
No	8	1.531	0.775	2.288	< 0.0001	90.38	Unchanged	23	
Supervised	C		01770			00.00	0.101101.800		
Supervised	18	0.906	0.054	1.271	< 0.0001	80.34	0.98 (0.60-1.36) [1]	450	
Unsupervised	3	1.074	-0.400	2.549	= 0.153	77.20	Unchanged	4	
Supervised and unsupervised	2	3.000	-0.061	6.093	= 0.05	92.34	N/A	N/A	
Professional who supervised							,		

Table 2: Subgroup meta-analysis in all studies

Physical exercise professional/physiotherapists/ex ercise physioloaists	11	1.261	0.549	1.972	< 0.0001	87.21	1.50 (0.80-2.21) [2]	262
Other	6	1.094	0.452	1.734	< 0.0001	16.13	Unchanged	73
Comorbidities						N Y	-	
No major comorbidities	22	1.142	0.815	1.469	< 0.0001	82.65	1.37 (.96-1.77) [3]	1067
Included participants with	3	-0.034	-0.415	0.347	= 0.861	0.00	Unchanged	0
comorbidities								
Type of publication								
Thesis	4	1.514	0.690	2.339	< 0.0001	2.92	Unchanged	30
Peer review journal	21	0.909	0.593	1.225	< 0.0001	82.88	1.12 (0.76-1.47) [3]	712

Key: MDD= Major depressive Disorder, Randomized Clinical Trials, SMD= Standardised mean difference.

<u>3</u> <u>1.c.</u> , SMD= Standardise.

	Moderator	Number RCTs	β	95%	CI	P value	R ²
Main exercise							
response							
	Mean age control	14	-0.0092	-0.0398	0.0214	0.5560	0.03
	Mean age exercisers	14	-0.0119	-0.0426	0.0188	0.4460	0.03
	% females exercise	16	0.0142	-0.0376	0.0092	0.2336	0.08
	% females control	16	0.0002	-0.0199	0.0203	0.9849	0.10
	% taking antidepressants exercise	18	0.0076	-0.0010	0.0163	0.0838	0.02
	% taking antidepressants control	18	0.0067	-0.0021	0.0155	0.1382	0.02
	Baseline depressive symptoms exercise	25	0.0178	-0.0133	0.0438	0.1791	0.05
	Baseline depressive symptoms control	25	0.0041	-0.0226	0.0308	0.7635	0.02
	% drop out exercise group	20	-0.0023	-0.0234	0.0346	0.5834	0.01
	% drop out control group	20	-0.0010	-0.0423	0.0354	0.8453	0.00
	Duration of trial	24	-0.177	-0.0857	0.0503	0.6098	0.02
	Weekly frequency	23	0.1164	-0.3252	0.5579	0.6056	0.00
MDD only							
	Mean age control	6	0.0251	-0.2903	0.3405	0.8761	0.00
	Mean age exercisers	6	0.0756	-0.1485	0.2998	0.5084	0.01
	% females exercise	7	0.0007	-0.0530	0.0545	0.9783	0.01
	% females control	7	0.0233	-0.0152	0.0618	0.2363	0.00
	% taking antidepressants exercise	7	0.0223	-0.0024	0.0234	0.0709	0.34
	% taking antidepressants control	7	0.0225	-0.005	0.0444	0.0671	0.14
	Baseline depressive symptoms exercise	9	-0.0360	-0.2599	0.1880	0.7531	0.04

Baseline depressive symptoms control	9	-0.1377	-0.3487	0.0013	0.0517 0.31	
% drop out exercise group	8	-0.0063	-0.3764	0.0434	0.4183 0.02	
% drop out control group	8	-0.0256	-0.0892	0.5304	0.6420 0.00	
Duration of trial	9	-0.1241	-0.8476	0.4511	0.3425 0.01	
Weekly frequency	9	0.1535	-0.2039	1.9812	0.5352 0.04	

4 0.. 392 0.5304 0.. 3476 0.4511 0.3425 0.04

Table 4: Subgroup meta-analysis in MDD studies

Analysis	Number of RCTs	Meta-analysis			Heterogeneity	Trim and fill effect size (95% Cl) [adjusted studies]	Classic fail safe N	
		SMD	95%	CI	P value	12		
Study quality								
High quality	3	1.133	-0.140	2.406	= 0.08	93.19	Unchanged	21
Low quality	6	1.176	0.244	2.109	= 0.013	87.64	1.81 (0.59-3.02) [2]	44
Study setting								
Outpatient/community	6	1.517	0.458	2.576	= 0.005	92.73	1.89 (0.53 - 3.25) [1]	84
Inpatient	3	0.553	0.167	0.938	= 0.005	0.00	0.72 (0.41-1.03) [2]	3
Intensity								
Ligth to moderate	1	0.525	-0.472	1.521	=0.302	0.00	N/A	N/A
Moderate	3	1.965	-0.211	4.142	=0.077	93.16	Unchanged	22
Vigorous	2	1.380	-1.110	3.870	=0.277	96.7	N/A	N/A
Exercise type								
Aerobic only	9	1.139	0.464	1.814	= 0.001	88.54	1.32 (0.56 - 2.08) [1]	132
Group exercise								
No	3	2.585	0.549	4.62207	= 0.013	93.86	Unchanged	158
Yes	4	0.677	0.061	1.294	= 0.031	60.91	Unchanged	9
Supervised								
Supervised	8	0.798	0.257	1.339	= 0.004	81.89	0.93 (0.36 - 1.51) [1]	66
Supervised and unsupervised	1	4.599	3.189	6.009	< 0.001	0.00	N/A	N/A
Professional who supervised								
Qualified exercise professional	6	1.537	0.514	2.599	= 0.003	91.619	Unchanged	97
Other	2	0.655	-0.011	1.420	= 0.094	6.11	N/A	N/A
Comorbidities		Y						
No major comorbidities	9	1.139	0.464	1.814	= 0.001	88.54	1.32 (0.56 - 2.08) [1]	132
Type of publication								

Table 4: Subgroup meta-analysis in MDD studies

Peer review journal	8	1.14	0.411	1.871	= 0.002	89.81	1.35 (0.52- 2.18)[1]	107
Thesis	1	1.176	0.132	2.220	= 0.027	0.00	N/A	N/A

Key: MDD= Major depressive Disorder, SMD= Standardised mean difference

RIFIN

Figure 1. Flowchart of studies selection

Figure 2. Meta-analysis of overall studies.

<u>Study nam</u> e	Statistics for each study								
i	Std diff n means	Lower limit	Upper limit	p-Value					
in Mota-pereira 2011 Singh 1997 Danielsson 2014 Mutrie 1988 Setaro 1985 Mcneil 1991 Brenes 2007 Hemat-far 2012 Pilu 2007 Epstein 1986 Doyne 1987 Nabkasorn 2005 Orth 1979 Huang 2015 Schuch 2015 Singh 2005 Shahidi 2011 Oertel Knoechel 2014 Hallgreen 2015 Kerling 2015 Gary 2010 Blumenthal 2007 Veale 1992	Std diff n means 4.599 3.105 2.679 2.408 1.529 1.484 1.237 1.217 1.217 1.217 1.217 1.217 1.217 0.732 0.732 0.732 0.729 0.729 0.729 0.452 0.452 0.362 0.452 0.362 0.207 0.137	Lower limit 3.189 2.075 1.845 1.815 0.899 0.495 0.495 0.495 0.397 0.280 0.397 0.132 0.231 0.449 -1.112 0.083 0.045 0.0452 0.294 -0.248 -0.248 -0.255	Upper limit 6.009 4.135 3.512 3.702 2.160 2.474 2.092 2.193 2.036 2.220 1.919 1.655 2.581 1.380 1.302 1.395 1.321 0.610 0.973 0.878 0.530 0.498	p-Value 0.000 0.000 0.000 0.000 0.003 0.004 0.011 0.004 0.027 0.013 0.027 0.013 0.027 0.013 0.027 0.032 0.036 0.302 0.302 0.302 0.302 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.321 0.322 0.325 0.322 0.325 0.355 0.35					
Williams 2008 Sims 2009	-0.022 -0.230 0.987	-0.761 -0.824 0.686	0.717 0.363 1.288	0.953 0.447 0.000					

Std diff in means and 95% Cl

Favours control Favours exercise

Std diff in means = standardized differences in means, CI = Confidence Interval

Conflict of Interest:

Davy Vancampfort is funded by the Research Foundation – Flanders (FWO-Vlaanderen). The other authors declares no conflict of interest.

Contributors:

Felipe Schuch - Participated in the conception and design of the study, reviewed studies, extracted data, performed the analysis and wrote the manuscript.

Davy Vancampfort - Participated in the design of the study, reviewed studies and wrote the manuscript.

Justin Richards - Reviewed studies, extracted data and wrote the manuscript.

Simon Rosenbaum - Reviewed studies, extracted data and wrote the manuscript.

Philip Ward - Reviewed studies and wrote the manuscript.

Brendon Stubbs - Participated in the conception and design of the study, reviewed studies, extracted data, performed the analysis and wrote the manuscript.

All authors revised the article critically for important intellectual content and approved the final manuscript.

CER AN

Role of the founding source:

The present study have received no specific founding.