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Abstract
Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions 
and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to 
treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiologi-
cal parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving nega-
tive and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings 
in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how 
aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its 
effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume 
increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. 
However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate 
that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentia-
tion of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed 
effects of aerobic exercise on the hypothalamus–pituitary–adrenal axis, growth factors, and immune-related mechanisms. 
Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify 
how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain 
and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on inter-
ventions in schizophrenia.
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Introduction

Schizophrenia is one of the most debilitating psychiatric 
disorders. Although antipsychotic medication is effective in 
reducing positive symptoms in schizophrenia patients, it is 
less successful in treating negative symptoms [1] and cogni-
tive deficits [2]. These symptoms, however, cause the most 
long-term disability and disease-associated burden [3]. Thus, 
novel treatment strategies that promote functional recovery 
by decreasing negative symptoms and cognitive deficits are 
warranted. Studies have suggested that aerobic exercise as an 
add-on therapy may meet this need [4, 5]. Aerobic exercise 
was shown to be superior to various control conditions in 
improving positive, negative, and general symptom severity, 
global and social functioning, need of care, and quality of 
life in schizophrenia patients [3, 6–8] (Fig. 1). Furthermore, 

 * Isabel Maurus 
 Isabel.Maurus@med.uni-muenchen.de

1 Department of Psychiatry and Psychotherapy, University 
Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, 
Germany

2 Department of Neuropsychiatry, Wakayama Medical 
University, Wakayama, Japan

3 Department of Radiology, University Hospital, LMU 
Munich, Munich, Germany

4 Department of Psychiatry and Psychotherapy, University 
Hospital Jena, Jena, Germany

5 Laboratory of Neuroscience (LIM27), Institute of Psychiatry, 
University of Sao Paulo, São Paulo, Brazil

http://orcid.org/0000-0002-6208-5180
http://crossmark.crossref.org/dialog/?doi=10.1007/s00406-019-01025-w&domain=pdf


500 European Archives of Psychiatry and Clinical Neuroscience (2019) 269:499–515

1 3

it was found to significantly ameliorate cognitive deficits 
in schizophrenia, with specific effects on working memory, 
attentional processes, and social cognition [9]. It was also 
shown to be effective in promoting physical health and 
reducing the risk of patients with schizophrenia to develop 
a somatic comorbid disorder [10–12]; this is of particular 
importance, because people with schizophrenia consistently 
have higher morbidity and mortality than the general popu-
lation. The life expectancy of people with schizophrenia is 
shortened by 10–20 years [4, 13], because they have a higher 
risk than the general population for cardiovascular disease 

[14], metabolic syndrome [15], diabetes [16], and respira-
tory diseases [17]. Unhealthy lifestyle habits, such as heavy 
smoking [18], poor diet [19], and low levels of physical 
activity [20], are likely to play important roles in the devel-
opment of these conditions. Finally, certain antipsychotics 
and the symptoms of the disease itself often lead to weight 
gain and metabolic syndrome [21].

Impairments in neuroplasticity, inhibitory functioning, 
and connectivity that result in failed neuroregeneration have 
been discussed as the underlying causes of negative symp-
toms and cognitive deficits in patients with schizophrenia 

Clinical Symptoms

Cogni�ve func�oning

Working memory 

Social cogni�on

A�en�on/Vigilance 

Everyday func�oning
Global func�oning

Social func�oning

Need of care

Quality of life

Soma�c aspects

Improved[1,2]

Global cogni�on

Impaired

Improved connec�vity

Increased level[1,4]

Increased level[2]

Decreased[2]

Increased cardiovascular 
fitness[2]

Improved[3]

Improved[3]

e.g. alogia, blunted affect, 
anhedonia, avoli�on, apathy

Decreased level

Decreased level

Increased

Reduced physical ac�vity, 
metabolic syndrome, etc.

Decreased

Improved[3]

Improved[1,2]

Increased[1]

Impaired 

Impaired

Impaired 

Nega�ve symptoms

Posi�ve symptoms

General symptoms

Total symptom severity

Improved[1,2]

Improved[3]

e.g. hallucina�ons, delusions

Observed impairments Postulated benefits*

Improved[1,2]

*Data derived from enclosed review

Aerobic
exerciseSchizophrenia

Fig. 1  Effects of aerobic exercise on symptoms and level of functioning in schizophrenia patients. Legends: Dauwan et al. [6], Firth et al. [11], 
Firth et al. [9], Vancampfort et al. [3]
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[22]. Aerobic exercise has been suggested as a promising 
intervention to target these deficits by modulating neuro-
plasticity. However, there is still some ambiguity regarding 
the underlying neurobiological mechanisms of exercise in 
schizophrenia patients. Unfortunately, this current lack of 
understanding has hampered the design of efficient exercise 
programs intended to have the greatest possible benefits in 
schizophrenia.

Based on findings in healthy individuals and animal 
models, this narrative review aims to give an overview 
of different lines of evidence on how exercise impacts 
brain structure and function and molecular mechanisms in 
patients with schizophrenia (Fig. 2) and how these effects 
could be related to the clinical and functional outcomes of 
this severe disorder.
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Fig. 2  Postulated neurobiological effects of aerobic exercise in 
schizophrenia patients. Legends: Firth et  al. [33], Weinstein et  al. 
[35], Svatkova et al. [51], Brockett et al. [68], Voisin et al. [85], van 

Praag [26], Pereira et  al. [77], Szuhany et  al. [110], Meeusen and 
De Meirleir [144], Tantimonaco et  al. [177], Stranahan et  al. [183], 
Gomes da Silva et al. [200]
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Thereby, we covered several research areas, ranging 
from structural findings to the effects on cellular level and 
molecular mechanisms. The literature was not systematically 
searched, extracted, and synthesized. However, for every of 
the following topics, a focused literature search based on the 
PubMed database has been conducted. So far, research has 
focused on aerobic formats of exercise, which seem to be 
most promising. On the basis of previous recommendations 
for schizophrenia patients [23, 24], we will concentrate on 
the effects of long-term aerobic training.

Structural plasticity

Structural magnetic resonance imaging (sMRI) findings, 
with a focus on gray matter

The hippocampus plays a vital role in declarative learn-
ing and memory formation. Notably, several psychiatric 
and neurological disorders, including schizophrenia, have 
been associated with hippocampal dysfunction. This may 
be because some symptoms are common to these disorders, 
such as aspects of cognitive impairment [25]. At the same 
time, the hippocampus has been identified as a brain region 
that is sensitive to the effects of physical activity, an aspect 
that has been extensively studied in rodents [26, 27]. In par-
ticular, aerobic training seems to promote hippocampal vol-
ume and function, as specified below.

An increase in hippocampal volume in response to aero-
bic exercise has been consistently observed in animal models 
[28, 29], and a number of human studies have also found that 
aerobic exercise can lead to improvements in learning and 
memory performance and that these improvements are asso-
ciated with increased hippocampal volume. For example, 
Erickson et al. [30] showed that a correlation between fitness 
and short-term memory in a large sample of healthy elderly 
adults was mediated by increases in hippocampal volume. 
Similar results were found in another study in healthy adults, 
which showed increases in bilateral hippocampal volume 
after 10 weeks of an aerobic exercise intervention program 
[31]. However, despite these and other promising findings 
[32, 33], overall evidence from studies on the effects of 
aerobic exercise on hippocampal volume in humans is less 
robust. Firth et al. recently undertook a meta-analysis of 
controlled trials on this topic. Across 14 eligible controlled 
trials in a total of 737 participants, they found no signifi-
cant effect of aerobic exercise on total hippocampal volume 
(g = 0.120, 95% CI 0.02–0.26, p = 0.082). However, com-
pared with control conditions, aerobic exercise had positive 
effects on left hippocampal volume in terms of a volume 
increase. As post hoc analyses revealed, these findings were 
driven through aerobic exercise preventing the physiologi-
cal volumetric decrease in comparison to control conditions 
[33]. Studies in older adults in particular have shown that 

exercise interventions can counteract age-related brain atro-
phy [34]. This effect might mediate the association between 
aerobic fitness and executive function [35]. Moreover, higher 
physical fitness levels have been associated not only with 
larger hippocampi [36] but also with larger cortical areas, 
especially frontal regions [35, 37, 38]. Again, systematic 
research on this issue is lacking.

Four of the studies in the meta-analysis by Firth et al. [33] 
investigated the impact of exercise on hippocampal volume 
in patients with schizophrenia. When analyzing these studies 
in a total of 107 people with schizophrenia or first-episode 
psychosis, the authors detected no significant increase in the 
total, right, or left hippocampal volume compared with con-
trol conditions (g = 0.149, 95% CI − 0.31 to 0.60, p = 0.53) 
[33]. However, because of the relatively small sample sizes 
across the studies, which did not allow for further subgroup 
analysis, they were unable to rule out possible benefits of 
aerobic exercise on hippocampal volume in schizophre-
nia on the basis of the null findings [33]. In patients with 
schizophrenia, individual risk factors may contribute to con-
flicting results [39, 40]. Indeed, schizophrenia polygenetic 
risk scores have been shown to significantly influence the 
exercise-mediated volume increase of specific subregions 
of the hippocampus [41].

Effects on white matter

Although most of the current literature focuses on assessing 
gray matter changes, some papers also report on the impact 
of aerobic exercise on white matter integrity [25]. White 
matter tracts interconnect distant cortical regions and are 
required to allow complex information processing in large-
scale networks [42, 43]. In cross-sectional studies, both 
aerobic fitness and endurance exercise have been shown to 
affect white matter tracts in healthy individuals [32, 44]. In 
a study by Burdette et al., older adults at risk for cognitive 
decline (because they were aged 70–85 years and had self-
reported memory loss) participated in an exercise interven-
tion (150 min/week of aerobic training), cognitive training, 
a combined treatment of exercise and cognitive training, or 
a healthy aging educational control group. After 4 months of 
the intervention, MRI measures of resting brain blood flow 
and connectivity were performed. The authors showed that 
physical exercise was associated with increased connectiv-
ity between prefrontal, cingulate, and hippocampal areas, 
which resulted in better performance on several cognitive 
tasks [45].

A recent meta-analysis assessed the effects of aerobic 
exercise on white matter volume, lesions, and microstruc-
ture in older healthy adults. The authors concluded that, 
across all 29 eligible studies, physical activity correlated 
with greater white matter volume, resulting in small but sig-
nificant effect sizes [46].
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Abnormalities in white matter integrity have been 
reported in patients with schizophrenia, particularly in fron-
tal and temporal cortices, by studies using diffusion tensor 
imaging (DTI), a method that assesses the diffusion proper-
ties of water molecules to infer microstructural white matter 
changes [47, 48]. Other studies have shown an abnormal 
myelination of the tracts responsible for communication 
between these regions [49, 50]. Svatkova et al. [51] con-
ducted a longitudinal intervention study in 33 patients with 
schizophrenia and 48 healthy controls. The participants were 
randomly assigned to either 6 months of training (1 h train-
ing session, consisting of 40 min of aerobic and 20 min of 
anaerobic exercise, twice weekly) or a life-as-usual condi-
tion. Using DTI, the researchers showed that the training 
led to an increased integrity in particular of white matter 
fiber tracts related to motor functioning, such as the corpus 
callosum, corticospinal tract, and superior longitudinal fas-
cicle, whereas life-as-usual led to a decreased fiber integrity. 
Remarkably, this benefit was seen in both the patients with 
schizophrenia and the healthy controls [51].

In summary, these studies demonstrate that aerobic exer-
cise is able to induce structural adaptations in motor func-
tion-related brain regions and associated fiber connections. 
Furthermore, the beneficial effects of exercise with respect 
to cerebrovascular health play an important role in white 
matter integrity. These benefits include the preservation of 
arterial elasticity and wall integrity and a reduction in arte-
rial stiffness and blood pressure [46].

Functional imaging findings

In addition to brain imaging with MRI, electrophysiologi-
cal techniques, including electroencephalography (EEG), 
functional magnetic resonance imaging (fMRI), functional 
near-infrared spectroscopy (fNIRS), and transcranial mag-
netic stimulation (TMS), may also be helpful in providing 
insight into the effects of aerobic exercise on brain activ-
ity and functioning [52]. For example, in healthy older 
adults, changes in task-related brain activation and func-
tional connectivity through long-term exercise were dem-
onstrated with fMRI [53, 54]. In addition, aerobic training 
was shown to increase functional connectivity between 
the frontal, posterior, and temporal cortices in both the 
default mode network (DMN) and the frontal executive 
control networks [55]. Compared with sedentary individu-
als, healthy, active individuals showed differences in motor 
cortical excitability, as assessed by motor cortex TMS, and 
motor cortical plasticity via paired-associative stimulation 
could only be induced in physically active people [56]. 
Older studies indicate changes in EEG amplitude and vis-
ual-evoked potentials (VEPs) after marathon running [57, 
58]. One recently published study showed that 3 months 
of aerobic endurance training (30 min, 3 times/week) on 

bicycle ergometers increased motor cortical inhibition, 
assessed by TMS, in both healthy controls and schizophre-
nia patients, with no significant group differences [59].

Neurogenesis

Neurogenesis refers to the process of generating new neu-
rons from precursor cells. Evidence from genetic studies, 
animal models, and imaging studies suggests that aberrant 
neurogenesis may contribute to the pathogenesis, patho-
physiology, and symptoms of schizophrenia [60].

Improvements in spatial learning and memory after 
chronic aerobic exercise have been associated with physi-
ological and structural neuronal changes, including neu-
rogenesis [26, 61]. In rodents, studies demonstrated that 
aerobic exercise promotes neurogenesis in the dentate 
gyrus subregion of the hippocampus [26, 27]. Moreo-
ver, in humans, regular aerobic exercise has been shown 
to increase cell density and shape in a number of hip-
pocampal regions [62, 63]. These changes in brain cell 
composition after exercise have been shown to relate to 
greater volumes of subregions of the hippocampus and to 
the total size of the hippocampus seen with structural MRI 
in rodents [64–66].

Until recently, the adult human hippocampus was con-
sidered to be able to continue generating new neurons 
up to adulthood, and aerobic exercise was thought to be 
a possible way to enhance neurogenesis [67]. However, 
evidence from human studies on hippocampal volume 
increase in response to aerobic exercise is less robust than 
that from animal studies [32, 33]. Findings regarding neu-
rogenesis as the underlying mechanism are also equivocal 
in humans. Whereas some studies have suggested that new 
neurons are added to the adult dentate gyrus every day, 
others have found many fewer putative new neurons [67]. 
To get to the bottom of the contradictory data, Sorrells 
et al. examined surgical resection samples from patients 
with epilepsy and postmortem samples from controls and 
detected no young neurons in the dentate gyrus [67]. In 
the monkey hippocampus, they found proliferation of neu-
rons in the subgranular zone in early postnatal life, but 
decreased neurogenesis during juvenile development. The 
group concluded that even though a recruitment of young 
neurons to the primate hippocampus occurs during the first 
years of life, neurogenesis in the dentate gyrus does not 
continue, or is extremely rare, in adult humans. Their find-
ings raise important questions about how the function of 
the dentate gyrus differs between humans and species in 
which adult hippocampal neurogenesis is preserved, such 
as rodents. It follows that even though exercise-induced 
neurogenesis could be shown in animals, it probably does 
not occur in humans.
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Gliogenesis

In rodents, studies examined whether exercise could alter 
the structure and function of astrocytes. Astrocytes form the 
majority of glial cells in the human central nervous system 
(CNS) and play an important role in the regulation of blood 
flow and trophic support, both functions that have numerous 
implications for neuronal functioning and synaptic growth 
[68]. Moreover, astrocytes modulate glutamate metabolism 
and transmission. Abnormality in these processes is highly 
correlated with schizophrenia phenotypes [69].

Using immunolabeling for astrocyte and synaptic mark-
ers in rodents, two studies observed an increase in astrocyte 
cell body size in the hippocampus, medial prefrontal cortex, 
and orbitofrontal cortex in response to running compared 
with the sedentary control condition [68, 70]. The authors 
concluded that aerobic exercise alters astrocyte morphology 
and leads to specific changes in astrocyte markers.

Animal models have also provided some evidence to sug-
gest an association between exercise and the proliferation 
of oligodendrocyte progenitor cells. Throughout adulthood, 
oligodendrocyte progenitor cells continue to differentiate 
into mature oligodendrocytes, a process that is essential for 
continued myelination. For example, running was shown to 
increase the number of immature and mature oligodendro-
cytes in the spinal cord of the mouse [71] and to increase 
differentiation of oligodendrocyte precursors after hypoper-
fusion of the brain [72]. These results suggest the existence 
of complex interactions between environmental factors, oli-
godendrocyte lineage development, and brain function [73].

The effects of aerobic exercise on glia proliferation and 
differentiation in schizophrenia patients or healthy controls 
are widely unknown. Positive findings, for example from 
DTI studies, as mentioned above, could reinforce the rel-
evance of physical exercise as a strategy for the regeneration 
of white matter tracts.

Angiogenesis

Angiogenesis is broadly defined as the formation of new 
blood vessels from the existing vasculature and is regulated 
by angiogenic growth factors, among others [74]. The main-
tenance of adequate cerebral blood flow is essential for a 
constant supply of oxygen and nutrients, which, in turn, is 
essential for the energy-requiring processes memory forma-
tion and consolidation [43]. Morphological, genetic, neuro-
imaging, and postmortem gene expression studies implicate 
cerebral microvasculature and changes in angiogenesis as a 
potential contributor to the pathophysiology of schizophre-
nia [74].

However, studies have shown that, in healthy older 
adults, greater aerobic capacity, achieved through regular 
physical activity, leads to higher cerebral blood flow and that 

dementia is associated with a reduced cerebral blood flow 
[75, 76]. A 3-month aerobic exercise intervention by Pereira 
et al. in healthy middle-aged participants resulted in an 
increased cerebral blood volume in the dentate gyrus region 
of the hippocampus, which correlated with improved learn-
ing and better memory performance [77], indicating that the 
vascular adaptations might contribute to subsequent neuro-
plasticity [78]. In schizophrenia patients, angiogenesis as a 
result of aerobic exercise still requires further investigation.

The literature on both animal and, to a limited extent, 
human studies suggests that gliogenesis, vascular adapta-
tions, and possibly neurogenesis represent the primary 
mechanisms on the cellular level, and that all three are pro-
moted by exercise. These adaptations are followed in turn 
by changes in molecular pathways, which will be further 
considered below.

Epigenetic alterations

Epigenomic profiling means linking genotype to differen-
tial gene expression [79]. A major epigenetic mechanism 
is methylation of cytosine bases within the genome. If this 
methylation occurs within the promoter region of genes, it 
results in repression of transcription, thus enabling tran-
scriptional control [80]. Histone modification of chroma-
tin is another epigenetic mechanism that influences gene 
expression [81]. Altered DNA methylation and histone 
post-translational modifications have been detected in the 
brain and blood cells of patients with schizophrenia [82–84]. 
In addition, micro-RNAs (miRNAs) that regulate the tran-
scriptome, such as miR137, have been shown to be differ-
entially expressed in brain regions of schizophrenia patients 
[82, 83]. Because environmental factors play a major role 
in epigenetic regulation [82], studies have investigated the 
respective effects of aerobic exercise. A review of 25 stud-
ies on the effect of physical activity on DNA methylation 
in humans concluded that long-term exercise can change 
methylation in a highly tissue- and gene-specific manner 
[85]. Studies that examined these mechanisms in rodents 
showed that exercise regulates DNA methylation and histone 
acetylation in the hippocampus [86]. Interestingly, animal 
studies even showed an influence of paternal exercise on the 
offspring’s hippocampal DNA methylation compared with 
the offspring of sedentary fathers [87, 88]. These findings 
indicate that exercise-induced epigenetic mechanisms have 
trans-generational effects.

Exercise enhances the activity of histone acetyltrans-
ferases and histone deacetylases, both of which play an 
important role in the regulation of histone acetylation and 
modulate gene transcription [89]. These mechanisms may 
contribute to the transcriptional regulation underlying the 
improvements in cognitive function seen in rodents after 
long-term aerobic exercise [89]. Moreover, in animals, 
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BDNF expression was shown to be enhanced through epi-
genetic mechanisms [86].

In addition, aerobic exercise is able to modulate the 
expression of memory-related miRNAs [86]. There are mul-
tiple interactions between miRNAs and epigenetic factors. 
On one hand, in many cell types, the expression of some 
miRNAs is silenced by DNA methylation and modulated 
by histone modifications. On the other hand, miRNAs can 
directly target epigenetic factors, such as DNA methyltrans-
ferases and histone deacetylases, which lead to adaptations 
in chromatin structure [90]. Exercise-induced memory 
improvements were shown to be accompanied by changes 
in the hippocampal miRNA-mRNA regulatory network in 
animals [91–93]. A comparison of endurance athletes and 
healthy controls found linear correlations between miRNA 
and both resting heart rate and maximum oxygen uptake 
[94]. The authors concluded that muscle-enriched miRNAs 
are regulated by aerobic exercise training and can serve as 
biomarkers of cardiorespiratory fitness [94]. However, there 
is a need for more research exploring epigenetic effects in 
human populations and patients with schizophrenia.

Synaptic plasticity

After being exposed to internal and external influences, the 
brain is able to respond on the synaptic level. A study in 
rodents showed that hippocampal dendritic length and den-
dritic spine complexity can be enhanced through exercise 
[63]. Kohman et al. [95] conducted a study with a micro-
array on whole hippocampal samples from adult and aged 
mice that were housed with or without a running wheel. 
The results showed that running increased the expression 
of genes related to cell growth, and attenuated the expres-
sion of genes involved in immune function and chromatin 
remodeling. A study with a similar design demonstrated 
an upregulation of genes involved with synaptic trafficking 
(synapsin I, synaptotagmin, and syntaxin), signal transduc-
tion pathways  (Ca2+/calmodulin-dependent protein kinase II, 
CaM-KII, mitogen-activated/extracellular signal-regulated 
protein kinase, MAP-K/ERK I and II, protein kinase C, and 
PKC-delta) and transcription regulators (cAMP response 
element-binding protein, and CREB) [96].

Exercise can also promote synaptic plasticity by facili-
tating long-term potentiation (LTP), as shown in animals 
[97–99]. LTP refers to the strengthening of synaptic con-
nections between neurons and is considered as a cellular 
model of learning and memory [100]. In young rodents, 
aerobic exercise was able to stimulate LTP and reverse the 
age-related decline of LTP compared with sedentary con-
trols [32]. Alongside morphological changes to the neural 
cells and their vasculature, these mechanisms may contribute 
to ameliorating learning and memory impairments. Their 

significance in patients with schizophrenia needs to be fur-
ther investigated in future studies.

Growth factors

The upregulation of various neurotrophic factors is assumed 
to be one of the underlying mechanisms mediating neuro-
plasticity through physical activity [76]. It is well docu-
mented that neurotrophic factors can facilitate the matura-
tion, proliferation, and survival of neurons [38, 101].

BDNF

Brain-derived neurotrophic factor (BDNF) not only has an 
integral role in supporting neuronal survival and growth, but 
also improves functional connectivity by increasing synap-
togenesis and dendritic spine density [100]. It is widely dis-
tributed throughout the CNS and can be found in particularly 
high concentrations in the hippocampus, neocortex, cerebel-
lum, striatum, and amygdala [101]. BDNF unfolds its effects 
on neurogenesis and synaptic transmission by binding to one 
of its receptors, high-affinity tropomyosin-related kinase-B 
(Trk-B). Binding to Trk-B results in receptor dimerization 
and trans-autophosphorylation of tyrosine residues in the 
cytoplasmic domains of the receptor, which in turn initiates 
a number of intracellular signaling cascades [38]. In models 
of normal aging and neurodegenerative conditions, treating 
cultured hippocampal or cortical neurons with exogenous 
BDNF protects them against dysfunction and degeneration 
[102, 103]. Moreover, BDNF has been shown to be essen-
tial for the maintenance of synaptic plasticity [102]. After 
applying BDNF to organotypic hippocampal slices in cul-
ture, a higher density of dendritic spines and synapses can 
be observed and the expression of synaptic proteins such 
as synaptophysin, synaptobrevin, and synaptotagmin rises 
[104].

The strongest evidence for acute exercise-induced 
increases of BDNF in the brain is derived from rodent stud-
ies [38, 105]. Using BDNF-mutant mice, Korte and col-
leagues first demonstrated that BDNF has a functional role 
in memory formation [106]. In the same year, it was reported 
that rats showed increased BDNF gene expression in the hip-
pocampus and certain layers of the caudal neocortex after 
7 days of wheel running [107], providing the first evidence 
that growth factors may be responsible for the beneficial 
effects of exercise on the brain [43]. Blocking BDNF recep-
tors, however, abolished the downstream effects of exercise 
on cognitive performance and memory [100]. This defect 
was rescued with BDNF replacement, either by injecting the 
BDNF-expressing adenovirus [108] or by supplying exog-
enous BDNF [109].

In humans, immediately preceding exercise has 
also been shown to increase peripheral BDNF levels 
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significantly. A meta-analysis by Szuhany and colleagues 
revealed that, after regular aerobic training, healthy indi-
viduals showed a higher increase in peripheral BDNF after 
immediately preceding physical activity (g = 0.59) than 
previously sedentary individuals showed after only a sin-
gle session of exercise (g = 0.46) [110]. Regarding resting 
BDNF levels after a program of regular exercise, Szuhany 
et al. found a low but significant effect size of g = 0.27. 
Moreover, exercise-induced expression of BDNF seems to 
be age-dependent and less pronounced in older individuals 
[111] and women [110].

In patients with schizophrenia, serum BDNF levels 
were shown to be significantly lower than in healthy 
controls [112, 113], and were associated with cognitive 
impairment [114]. Several studies have examined the link 
between aerobic exercise and BDNF in schizophrenia 
patients. Peripheral BDNF was shown to increase after 
aerobic exercise compared with an inactive control group 
consisting of either patients with schizophrenia receiv-
ing treatment as usual [115–118] or healthy controls 
[119]. Moreover, after aerobic exercise, positive correla-
tions were demonstrated between BDNF and cognitive 
enhancements [120], providing an important clinical link 
to enhanced neuroplasticity.

Although there are several growth factors that may play a 
role in the chronic effects of exercise, besides BDNF insulin-
like growth factor (IGF-1) and vascular endothelial growth 
factor (VEGF) have received the most interest. BDNF inter-
acts with both IGF-1 and VEGF, both of which stimulate 
the growth of endothelial cells, which express nitric oxide 
synthase. Nitric oxide synthase in turn is required for exer-
cise-induced upregulation of BDNF in the hippocampus [38, 
121].

IGF‑1

Studies comparing trained and sedentary individuals dem-
onstrated that IGF-1 levels are significantly higher in trained 
individuals [32]. In addition, both animal and human studies 
revealed that exercise is associated with an increased periph-
eral level of IGF-1 [122]. Circulating IGF-1 crosses the 
blood–brain barrier [123], enhances synaptic plasticity and 
neuronal survival, and increases concentrations of BDNF 
[124]. IGF-1 replacement was shown to enhance learning 
and memory in rats [125].

Compared with healthy controls, schizophrenia patients 
exhibit reduced levels not only of BDNF but also of IGF-1 
[126, 127]. To the best of our knowledge, so far, only one 
study has assessed changes in peripheral IGF-1 levels in 
schizophrenia patients after aerobic exercise: Andrade et al. 
found no differences in peripheral IGF-1 levels induced by 
20 weeks of aerobic exercise [128].

VEGF

VEGF is produced by skeletal muscle cells and secreted 
into the circulation. Acute exercise increases VEGF mRNA 
in skeletal muscle, whereas VEGF protein itself is reduced 
immediately after acute exercise [129]. However, chronic 
exercise is able to restore and even increase skeletal muscle 
VEGF mRNA and protein levels [130]. Even though VEGF 
does not readily cross the blood–brain barrier, in animals, 
increased levels were shown in the hippocampus after exer-
cise [131].

Regarding patients with schizophrenia, a meta-analysis 
by Misiak and colleagues in 15 eligible studies revealed no 
significant differences in VEGF levels between patients and 
controls [132]. However, heterogeneity across the studies 
was significant in the majority of the analyses [132]. Insuf-
ficient data were available on exercise-induced changes in 
VEGF levels in patients with schizophrenia.

Other growth factors that represent potential targets for 
future investigations, because they have been shown to 
change with exercise, include nerve growth factor (NGF) 
[96], neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), fibro-
blast growth factor type 2 [133], VGF growth factor [134], 
and galanin [48, 135, 136].

Neurotransmitter systems

Because of technical challenges, only a few studies have 
examined the effects of exercise on the neurotransmitter 
systems in the brain of awake humans. Instead, most studies 
have been conducted in rodents, using techniques such as in 
vivo microdialysis or high-performance liquid chromatogra-
phy (HPLC) analysis of postmortem brain tissue [137, 138]. 
These studies have shown that aerobic exercise influences 
several neurotransmitter systems in the brain, such as seroto-
nin (5-hydroxytryptamine, 5-HT), dopamine, acetylcholine, 
and norepinephrine. We will discuss these effects below to 
indicate future research areas that may identify possible ben-
eficial effects of aerobic exercise on neurotransmitters in 
schizophrenia patients.

Serotonin

The monoamine neurotransmitter serotonin (5-HT) is 
known to play an important role in the process of learning 
and memory in the hippocampus [139]. However, its trans-
mission in the hippocampus is disrupted in schizophrenia 
[25, 140], which likely contributes to the deficits in memory 
often associated with the disorder [65, 141, 142].

Animal studies have shown that chronic exercise 
increases 5-HT concentrations in the brain, particularly in 
the striatum, hippocampus, hypothalamus, and frontal cor-
tex [143, 144]. Physical activity is presumed to increase 
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the relative proportion of free tryptophan peripherally 
as the underlying mechanism for the increases in 5-HT 
concentrations: During exercise, free fatty acids displace 
tryptophan from binding with albumin, and the unbound 
tryptophan is able to cross the blood–brain barrier and 
form 5-HT [145]. Moreover, an exercise-induced modula-
tion of enzymes results in an altered metabolism of 5-HT 
[146]. The extent to which these mechanisms occur in 
patients with schizophrenia and how they contribute to 
neuroplasticity and reduced negative symptoms has not 
yet been examined.

Norepinephrine

The effect of exercise on brain concentrations of nor-
epinephrine has also been evaluated in animal studies. 
Meeusen et al. reported that chronic exercise leads to an 
increase in the concentration of norepinephrine in the 
whole brain [144]. Moreover, a study in mice showed that 
exercise-induced reductions in depression-like behavior 
were correlated with an increase in hippocampal norepi-
nephrine [147]. Although norepinephrine is involved in 
a variety of cognitive processes [148], changes in cog-
nitive functioning related to exercise-induced effects on 
norepinephrine have not yet been well evaluated in healthy 
humans or patients with schizophrenia [52].

Dopamine

Optimal dopamine levels are important, because dopa-
mine plays a key role in motivation [149] and mood, and 
is involved in the pathogenesis of schizophrenia [150]. 
Repeated exercise leads to adaptations in the dopaminergic 
system through several mechanisms, as has been shown 
in animals. These mechanisms include modulation of 
dopaminergic turnover [151] and optimization of enzyme 
functions, such as tyrosine hydroxylase activity [152], and 
calcium levels [153, 154]. Peripheral catecholamines do 
not cross the blood–brain barrier. However, aerobic exer-
cise leads to increased levels of serum calcium, which is 
transported to the brain via the calcium–calmodulin sys-
tem. This, in turn, enhances the brain dopamine synthe-
sis through a calmodulin-dependent system [155]. An 
increase in dopamine concentrations after aerobic exercise 
is region-specific. Whereas dopamine levels were higher 
in the hypothalamus and midbrain after aerobic exercise 
training, they were lower in the prefrontal cortex, hip-
pocampus, and striatum [137, 144]. However, research 
regarding adaptations in the dopaminergic system through 
aerobic exercise in schizophrenia patients is still lacking.

Glutamate

Glutamate plays a central role in synaptic plasticity [156], 
and alterations in the glutamate system, such as a hypofunc-
tion of the N-methyl-D-aspartate receptor, have been linked 
to the pathogenesis of schizophrenia [157, 158]. Aerobic 
exercise is able to enhance glutamate turnover [159] by 
improving calcium regulation [160] and, as has been dem-
onstrated in animals [161], leads to increased glutamate 
levels in the anterior cingulate cortex. Exercise upregulates 
glutamatergic-related genes [96, 162] and increases both 
the expression of NR2A and NR2B glutamatergic recep-
tors [163] and mRNA and protein expressions of NMDA 
receptors [164] in the hippocampus; these effects are asso-
ciated with neurogenesis and synaptic plasticity [154, 163]. 
In healthy humans, a proton magnetic resonance spectros-
copy (H-MRS) study visualized changes in glutamate in 
the primary visual cortex and the anterior cingulate cortex 
after exercise: aerobic exercise increased glutamate in both 
cortical areas, leading to higher resting states after 1 week 
[161]. Nevertheless, future studies are needed to investigate 
the relationship between exercise-induced changes in the 
glutamate system and cognition in schizophrenia patients.

Acetylcholine

The nicotinergic acetylcholine (nAch) receptors α7 and α4β2 
have been reported in postmortem studies to be lower in the 
prefrontal cortex and hippocampus in patients with schizo-
phrenia than in healthy controls and to be related to cognitive 
deficits [165, 166]. Decreased receptor function is related to 
cognitive deficits, especially learning and memory. Agonists 
of the nAch receptor α improve cognition and may be effec-
tive in the treatment of schizophrenia [167]. In an animal 
model of schizophrenia, the DISC1 transgenic mouse, vol-
untary exercise improved hippocampus-dependent spatial 
memory and social recognition [168]. In exercising rats, 24 h 
after spatial memory testing, an upregulation of muscarinic 
receptor density and an increase in high-affinity choline 
uptake were found, concomitant with a reduction in hip-
pocampal high-affinity choline uptake [169]. Moreover, the 
animals demonstrated an enhanced depolarization-induced 
activation of high-affinity choline uptake. Animal models 
showed that brain acetylcholine levels increase during aero-
bic exercise, specifically in the hippocampus and cortex. 
This increase in acetylcholine supports the generation of 
hippocampal theta activity, which enhances synaptic plastic-
ity and memory formation [170, 171]. Therefore, changes 
in the acetylcholine system may be involved in exercise-
induced improvements in cognitive function; however, this 
relationship has not yet been investigated in patients which 
schizophrenia.
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Endocannabinoid system

The endocannabinoid system, including altered expression 
of the cannabinoid 1 (CB1) receptor, has been implicated in 
the pathophysiology of schizophrenia [172, 173]. It repre-
sents a neuromodulatory system that is known to regulate 
emotional and cognitive processes, resulting in analgesia, 
sedation, anxiolysis, and a sense of wellbeing [155, 174]. 
This system comprises cannabinoid 1 and 2 (CB1 and CB2) 
receptors, which are expressed at high density in the brain 
and periphery [175].

Sparling et  al. [176] reported the first evidence that 
exercise is able to activate the endocannabinoid system by 
showing elevated plasma anandamide levels in healthy run-
ners and cyclists when compared with sedentary controls. 
Exercise can help to modulate the endocannabinoid sys-
tem, which may mediate some of the beneficial impacts of 
exercise on cognition and mood [177, 178]. Although this 
hypothesis has not yet been further investigated, the effects 
of exercise on the endocannabinoid system might contribute 
to its positive effects on cognition and mood in schizophre-
nia patients.

Hypothalamus–pituitary–adrenal (HPA) axis 
hormones

HPA axis dysregulation and altered blood cortisol levels 
are implicated in mental stress, and are suggested to be a 
pathophysiological factor in schizophrenia, especially dur-
ing acute episodes [179–181]. In addition, BDNF expression 
is suppressed under conditions of chronic adverse stress, 
because hippocampal BDNF mRNA is negatively correlated 
with plasma glucocorticoid levels. This has been shown in 
animals to lead to an impaired ability of neurons to protect 
themselves against injury and disease, as outlined previously 
[182].

Although physical exercise is an acute stressor, chronic 
exercise can have neuroprotective effects. Some of the 
hypotheses presented in the literature that address the cor-
relation between the HPA axis and exercise suggest that bio-
logical changes in the activity of the HPA axis could be an 
effective feedback mechanism via enhanced density and effi-
ciency of mineralocorticoid receptors, lower cortisol levels, 
and inhibition of cortisol synthesis [183]. However, results 
concerning brain HPA axis hormones are somewhat equivo-
cal. There is only weak evidence that exercise alters cortisol 
concentrations in humans [184]. Regarding the expression 
of corticotrophin-releasing hormone (CRH) mRNA, some 
authors stated that it is decreased in the hypothalamus after 
long-term exposure to exercise [185], whereas others found 
either no significant effect [186] or an initial increase fol-
lowed by a return to original levels [187].

The findings concerning the effect of chronic exercise 
on brain corticosteroid receptor mRNA gene expression are 
contradictory [119, 186].

Summing up, there is no clear evidence for biological 
changes in the activity of the HPA axis after exercise in 
either healthy individuals or schizophrenia patients.

Immune‑related mechanisms

In patients with schizophrenia, increased brain inflammatory 
markers [188] and a chronic low-grade systemic inflamma-
tion with microglia activation [189, 190] have been reported, 
and inflammation has been proposed to affect cognitive 
functioning [191]. However, in schizophrenia, a reduced 
expression of immune-related genes has also been detected 
and related to disturbed synaptic processes [192]. In this 
context, treatment with antipsychotics may influence the 
expression of pro-inflammatory genes [193].

Animals with increased brain inflammatory factors (such 
as TNF-alpha, IL-6, CRP, and 1IL-1beta) show depression-
like and sickness behavior [194, 195]. The levels of the neu-
roinflammatory mediators and also the sickness behavior can 
be attenuated by voluntary aerobic exercise [196]. Aerobic 
exercise has been shown to be a promising intervention to 
reduce inflammation in the periphery and the brain of ani-
mals [197, 198].

Acute exercise leads to a rapid elevation in peripheral lev-
els of IL-6, but the rise of inflammatory markers is quickly 
followed by the induction of anti-inflammatory substances, 
such as IL-1ra, IL-10, and soluble tumor necrosis factor 
receptor. Regular exercise, on the other hand, downregulates 
systemic inflammation via homeostatic adaption [103, 199]. 
Several studies have shown an inverse association between 
regular exercise and various inflammatory biomarkers, such 
as TNF-α [200], IFN-γ [197], and IL-1β [198, 201, 202]. In 
addition, aerobic exercise leads to a reduction of IL-18, CRP, 
TNF-alpha, and IL-1beta [203, 204] and a marked increase 
in anti-inflammatory mediators, such as IL-10 [205, 206]. 
Moreover, exercise results in a decrease in pro-inflamma-
tory visceral white fat mass [198, 204], in the proliferation 
of microglia [197], and in the hippocampal expression of 
immune-related genes [207, 208].

In schizophrenia patients, changes in C-reactive protein 
(CRP) were studied after 8 weeks of high-intensity inter-
val training (HIIT). Although CRP decreased by 66%, the 
difference from the non-exercising control group was not 
statistically significant [209]. Another study examined 
serum CRP, IL-6, and TNF-alpha levels in obese patients 
with schizophrenia after a 10-week lifestyle intervention 
(including lifestyle modification, psychosocial treatment, 
behavior therapy, and aerobic exercise). The authors were 
not able to find any significant changes in comparison to the 
control group, which consisted of matched controls without 
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psychiatric disorders [117]. However, levels of circulating 
pro-inflammatory cytokines in the blood are confounded by 
many factors, including smoking, obesity, sleep disorders, 
and poor oral health, all of which are common in schizo-
phrenia and further contribute to the inflammatory burden 
in schizophrenia patients [103, 120, 210]. Thus, to date, the 
extent to which aerobic exercise can improve cognitive func-
tioning in schizophrenia via alterations in the expression of 
immune-related genes remains unclear.

Exercise‑induced generation of reactive oxygen 
species

Increased free radical production and an impaired antioxi-
dant defense system have been shown to be involved in the 
pathophysiology of schizophrenia [211]. In addition, oxida-
tive changes have been shown to interfere with the stabil-
ity of genomic DNA in the brain of schizophrenia patients 
[212]. Oxidative stress is defined as an imbalance between 
antioxidants and reactive oxygen species (ROS) (e.g., super-
oxide, hydrogen peroxide, and hydroxyl radical) [213]. It has 
been suggested that the beneficial effects of regular aero-
bic exercise are partly based on its ability to generate ROS 
[214]. Exercise-induced ROS production contributes to the 
induction of antioxidants, DNA repair, and protein-degrad-
ing enzymes [155]. Long-term exercise may be helpful in 
optimizing the enzymatic antioxidant system and mitigating 
oxidative damage in schizophrenia patients, but this issue 
has not been studied yet [154].

Discussion

The aim of this narrative review was to give an overview of 
different lines of evidence on how exercise impacts brain 
function at different levels in patients with schizophrenia. 
We wanted to clarify how those effects of exercise could be 
related to the clinical and functional outcomes.

The past years have seen a growing number of publica-
tions on the neurobiological mechanisms of exercise, but few 
have reported on these effects in patients with schizophrenia. 
Although the clinical effects of exercise in schizophrenia are 
becoming increasingly evident, more research on the under-
lying neuroadaptive processes is warranted.

Animal studies have provided consistent evidence that 
exercise results in brain morphological changes and func-
tional adaptations, including an increase in the concentra-
tions of neurotrophic factors and neurotransmitters.

Animal models provide a valuable source of informa-
tion, because they enable experimental approaches and give 
insights into the molecular and cellular mechanisms that 
cannot be investigated in humans. Although animal mod-
els have revealed much about the potential neurobiological 

mechanisms of exercise effects on brain and cognition, 
the findings often cannot be easily generalized to humans 
because of the physiological and behavioral differences 
between humans and other species. Evidence from human 
studies on the neuroadaptive processes of exercise is limited 
to date. Because of the often small effect sizes and numer-
ous negative findings, conclusions must be drawn cautiously. 
Given the rather limited amount of research, especially in 
patients with schizophrenia, it is currently not possible to 
either confirm or refute any of the above-mentioned neu-
robiological explanations. However, research to date indi-
cates that, in schizophrenia patients, aerobic exercise has 
an impact on brain structure (e.g., as shown by MRI stud-
ies) and function (e.g., as shown by TMS studies), epige-
netic mechanisms, gene expression, and neurotransmitters, 
restores BDNF levels, and may influence immune-related 
genes (Fig. 2).

In general, exercise research comes with some limita-
tions, because the interventions depend on the participants’ 
compliance. Patients with schizophrenia may often have a 
diminished motivation to be physically active, which is why 
research might represent a positive selection [76]. In addi-
tion, treatment with antipsychotics may increase sedation 
and muscular exhaustion. Therefore, patients performing 
aerobic exercise need concomitant supervision and encour-
agement by sports scientists [23]. Furthermore, the duration, 
frequency, and modality of aerobic exercise training differ 
between studies [215].

Additional research is needed to clarify the role of the cel-
lular and molecular pathways in patients with schizophrenia. 
The field will profit from additional randomized-controlled 
trials, which have the potential to systematically establish a 
causal relationship between aerobic exercise, its neurobio-
logical effects, and outcome parameters, such as negative 
symptoms and cognitive deficits.

We have little knowledge on the optimal intensity, dura-
tion, and frequency of exercise that may be required for 
exercise-induced changes to interact with schizophrenia 
or on the type of exercise that may be most beneficial [23, 
216]. Further research is required to clarify in more detail 
how individual differences in patients with schizophrenia 
mediate or moderate the effects of exercise on the brain and 
cognition. In this context, it may be important to examine 
the effects of genetic and environmental risk factors on the 
individual response to aerobic exercise.

Limitations of this narrative review include the lack of 
systematic literature research, which increases the risk of 
selection and evaluation bias. However, the main aim of this 
review was to give an overview of the current knowledge 
about the impact of aerobic exercise on neurobiological 
functions from the macro- to the micro-level with a focus on 
schizophrenia patients to foster a general debate and discuss 
rationales for future research.
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Even though its underlying neurobiological mechanisms 
have not yet been fully clarified, exercise remains a promis-
ing candidate in the search for interventions that address the 
negative and cognitive symptoms of patients with schizo-
phrenia and, thus, improve their outcome.
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