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Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder associated with varied prognosis, chronic course, and
duration of illness with reduced quality of life. One factor that significantly contributes to the relevant disease burden of MDD
is the heterogeneous treatment response patients experience with current treatment options. Avariety of experimental protocols in
humans and animals have highlighted that inflammation and neuroinflammation are relevant biological factors that interact with
external stimuli and neurophysiological mechanisms, and can trigger MDD. It is well established that exercise is efficacious in
treating mild to moderate depression with response rates comparable to mainstream therapies such as antidepressant medication
and cognitive behavioral therapy. Several studies have shown that physical exercise is beneficial for a range of chronic diseases.
Indeed, physical exercise can promote molecular changes that swerve a chronic pro-inflammatory state to an anti-inflammatory
state in both periphery and central nervous system. The changes caused by physical exercise include an increase in PGC1α gene
expression, a transcriptional co-activator involved in reducing the synthesis and releasing of pro-inflammatory cytokines, and an
increase in anti-inflammatory cytokines. PGC1α changes the metabolism of kynurenine towards, and, in turn, it reduces
glutamatergic neurotoxicity. Moreover, some studies have shown that physical exercise promotes alterations in the circuitry of
monoaminergic neurotransmission, at least in some aspects, through the effects on the release of proinflammatory cytokines. This
review will highlight the effects of physical exercise as therapy and its relation with the biological mechanisms involved in the
pathophysiology of MDD, with particular emphasis in the interactions among physical exercise, hypothalamic-pituitary-adrenal
(HPA) axis, neuroinflammation, and with the neurotransmitters underlying the main brain circuits involved in the MDD.
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Introduction

Major depressive disorder (MDD) is a prevalent psychiatric
disorder associated with varied prognosis, chronic course, and
duration of illness with reduced quality of life and increased
suicide risk [1, 2]. In addition to potential suicidal risk, MDD
leads to functional impairment, which causes a burden to pa-
tients, their families, and society [1, 3]. Moreover, MDD af-
fects more than 300 million people worldwide, and it is a
leading cause of disability among people [3].

The search for biomarkers is impaired by the heterogeneity
of MDD [4] and the limitation of its current diagnostic cate-
gories such as self-reports, measurement-based scales, with a
lack of understanding of the molecular blood testing com-
pared to other diseases [5]. In clinical practice, efforts are
made to understand the illness characteristics [6], duration of
illness [7], family history of mood disorders [8], depression
symptoms and its subtypes [9], comorbid psychiatric disor-
ders [9], and others.
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Neuroimaging studies have shown that MDD is associated
with cerebral volume alterations and functional changes in
brain networks related to emotional processing and cognition
[10]. Patients with MDD often have cognitive dysfunction in
domains like attention, executive functions, memory, or psy-
chomotor speed [11], which has been classically considered to
be secondary to affective symptoms. Nowadays, however, this
traditional view is changing since cognitive dysfunction has
proved to be a central and lasting feature of MDD [12].

One factor that contributes in a relevant way to the signif-
icant burden of MDD is the heterogeneity in the responses to
the available treatment options [13]. Initial response rates to
treatment with selective serotonin reuptake inhibitors (SSRIs)
and selective noradrenaline reuptake inhibitors (SNRIs) are
approximately 50%, with remission rates for SSRI and
SNRI treatment ranging from 30 to 35% [14]. Moreover, pa-
tients with remitted depression show residual cognitive dys-
function [15], leading to impairment in psychosocial function-
ing [15, 16]. Considering that one of the main targets in the
treatment of MDD is achieving a functional recovery besides
symptomatic recovery [8, 15], there is an urgent need to de-
velop novel alternative strategies for the treatment of MDD.
Thus, compared with these expensive treatments, physical ex-
ercise can play a critical role in improving the brain functions
on multiple levels [17].

Exercise as an add-on to conventional antidepressant ther-
apies is a promising treatment strategy for MDD [18]. It is
well established that exercise is efficacious in treating mild
to moderate depression with response rates comparable to
mainstream therapies such as antidepressant medication and
cognitive behavioral therapy [19–22]. Among several mecha-
nisms possibly underlying the beneficial effects of physical
exercise, recent research points to an interaction between
physical exercise, reduction of peripheral inflammation and
neuroinflammation, and better performance in limbic cerebral
circuits related to reward and MDD [23]. However, there is
still a lack of understanding of the neurobiological mecha-
nisms that underlie or mediate the antidepressant effects of
exercise. Also, neurobiological effects and hippocampal
neurogenesis seem to occur differently according to the type
of physical training, that is, if the training is aerobic (AT) or
resistance (RT) [24]. Therefore, this review will highlight the
effects of physical exercise as therapy and its relation with the
biological mechanisms involved in the pathophysiology of
MDD, with special emphasis on the interactions between
physical exercise, neuroinflammation, and the neurotransmit-
ters underlying the main brain circuits involved in MDD.

Depression, Inflammation, and Neuroinflammation

Clinical and translational studies indicate that stress and de-
pression are associated with increased immune system activ-
ity, increased leukocyte function, and the release of pro-

inflammatory cytokines [25]. Cytokines also interact with
pathways associated with MDD, including neurotransmitter
metabolism, neuroendocrine functions, and neural plasticity
[26]. Patients with depression have high levels of pro-
inflammatory mediators such as interleukins (IL) (IL-1, IL-2,
and IL-6) and tumor necrosis factor-α (TNF-α) [27]. Studies
with animal models have also shown that depressive-like be-
haviors are associated with increased inflammatory markers
peripherally and in brain regions involvedwithMDD [28, 29].
Even more relevant are some observations that increased pro-
inflammatory immune mediators appear to be more related to
the vulnerability of individuals to stress [28] and poor re-
sponse to classical pharmacological treatments [30]. Also,
long-term social stressors are more associated with increased
chronic inflammatory processes and depression [31].

A significant association of cytokine function with the
mechanisms related to mood and the onset of MDD can be
attributed to the fact that cytokines can reduce the levels of
serotonin and cause changes in other mechanisms of neuro-
transmission and neuronal signaling in brain regions involved
with MDD [32]. It is also essential to consider that cellular-
mediated immune activation is involved with a reduction in
serotonin levels from tryptophan as well as glucocorticoid
resistance in immune cells, culminating in symptoms of de-
pression [33]. Similar to MDD, pro-inflammatory cytokines
alter the functional status of the serotonergic pathways origi-
nating from raphe nuclei, which are directed to the limbic and
cortical system [23].

Inflammation and HPA Axis: Functions in the Stress
and Depression

Among the critical physiological processes that occur with
immune activation, hormonal changes related to stress and
depression may be included [34]. The hypothalamic-
pituitary-adrenal (HPA) axis is a crucial component involved
in the vast physiological network activated by stress [35, 36].
The relationship between the immune system and the HPA
axis appears to be more complex. In addition to involving a
mutual relationship, other systemic mechanisms are involved,
such as the function of the autonomic nervous system and the
variation in tissue response to glucocorticoids. The subchronic
release of glucocorticoids during a period of stress promotes
an immunosuppressive effect, in the sense of restoring im-
mune function to basal levels and, thus, preventing an inflam-
matory overshoot [37, 38]. However, with prolonged stress,
high glucocorticoid levels extrapolate the allostatic load, alter-
ing certain aspects of the regulation of immune function.
Thus, chronic stress shifts the balance from healthy function
to unhealthy function. In these situations, the immune system
becomes inefficient to act in pathological situations like infec-
tions and cancer, for example [39]. The fact that individuals
have increased inflammation and pro-inflammatory markers
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after prolonged stress has directed research to evidence that
some individuals develop resistance to glucocorticoids and
thus, the immune system becomes nonresponsive to the sup-
pressive function of the HPA axis, culminating in chronic
inflammation. Chronic psychosocial stress appears to involve
relative resistance to glucocorticoids and increased circulating
inflammatory markers, even when significant variations in
HPA axis activity do not occur [40]. In turn, inflammatory
cytokines stimulate the HPA axis, increasing the release of
glucocorticoids. Importantly, dysregulation of the immune
system and persistent inflammation are inherent characteris-
tics of recurrent MDD. The conditions associated with chronic
inflammation inhibit the negative feedback from the HPA ax-
is, increase the permeability of the blood-brain barrier,
impairing the function of neurotransmitters, thus culminating
in the relapse of depression [41, 42]. Studies have shown that
IL-1 stimulates the release of corticotrophin-releasing factor
(CRF) through the hypothalamus and ACTH through anterior
pituitary [43]. The cytokines TNF-α, IL-1, and IL-6, when
released into the systemic circulation, stimulate the HPA axis
individually or synergistically between them [44]. It is also
important to note that in addition to increasing HPA axis ac-
tivity in response to chronic stress, some pro-inflammatory
cytokines appear to activate transcription factors and, conse-
quently, potentiate HPA activity [45].

An important factor to consider is that two subtypes of
MDD characterized according to the degree of inflammation
and the level of activation of the HPA axis are present in the
population. Although some researches have failed to detect
well-established differences between the degree of inflamma-
tion and the level of HPA axis activity, other studies have
observed functional parameters that make it possible to char-
acterize the twoMDD subtypes [46]. Themelancholic depres-
sion has a positive correlation with the activation of the HPA
axis, whereas the atypical depression is related to an increase
in the degree of inflammation in co-occurrence with function-
al aspects inherent in the metabolic disturbances [46].

At another angle, it is essential to consider that glucocorti-
coid resistance and activation of the HPA axis from inflam-
matory markers seem to lead to a pathophysiological situation
in which both HPA axis hyperactivation and increased pro-
inflammatory components coexist [40]. Therefore, a third
condition seems to be part of the protagonism of the HPA-
inflammation pathway and contributes to the recurrence of
depression (Fig. 1) [42]. Regarding the theory of resistance
to glucocorticoids, it is important to mention researches,
which observed increased levels of cortisol and inflammation
in TRD patients. In these studies, the authors noted that the
same TRD patients showed resistance to glucocorticoids [47,
48].

It should also be mentioned that an increase of glucocorti-
coids in the prenatal stage can cause alterations in mitochon-
drial function, with consequent oxidative stress [49]. Also,

rodents subjected to maternal deprivation stress in the first
days of life present dysregulation, with a chronic increase in
circulating glucocorticoid levels and reduction of the negative
feedback process, when submitted to psychosocial stress
throughout life. Both animals submitted to maternal depriva-
tion and those receiving exogenous glucocorticoids may ex-
hibit depressive-like behaviors in adult life and impairment in
HPA axis regulation [50].

HPA Axis, Microglial Activation, and Inflammation:
Functions in the Stress and Depression

Increased release of glucocorticoids during stress induces
microglial activation and neuroinflammation [32]. Not
disregarding the range of effects exerted by glucocorticoids
released from chronic stress, several studies have shown that

Fig. 1 Resistance to glucocorticoids, inflammation and HPA axis—
recurrent depression. The hypothalamic-pituitary-adrenal axis is a key
component of the physiological network triggered by chronic stress.
Prolonged stress seems to culminate in glucocorticoid resistance in some
individuals. Glucocorticoid resistance leads to the coexistence of HPA
axis hyperactivity and increased inflammation. This situation underlies
the severity and recurrence of depression
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the dysregulation of astrocytic function constitutes an impor-
tant phenomenon inherent to the mechanisms involved in
MDD [33]. Chronic microglial and astrocytic activation in-
duces an increase of reactive oxygen and nitrogen species,
which may culminate in oxidative and nitrosative stress in
the central nervous system [51]. It is also essential to consider
that glucocorticoids increase the levels of reactive oxygen
species while increasing the toxicity of oxidative stress, which
may result in brain damage in regions sensitive to stress in
early life [52].

Recent research has pointed out that the function of mi-
croglia is one of the critical mechanisms that may be involved
with the pathophysiology of MDD [53]. Durable microglial
changes may occur from chronic stress and may underlie
mood disorders, among other psychiatric disorders and neu-
rodegenerative diseases [54]. Among the several alterations of
the activated microglia, which allow the adaptation to act with
the most varied pathological conditions, have included the
synthesis and release of cytokines and other inflammatory
mediators [55]. A postmortem study evidenced the presence
of activated microglia in the hippocampus of individuals with
mood disorders [56]. Other authors have observed an increase
in microglial activation signaling molecules in the PFC,
insula, and cingulate cortex in an in vivo study in patients with
MDD and a positive correlation with the severity of depres-
sion [57]. Among the mediators and mechanisms of
microglial activation are cytokines, various inflammatory me-
diators, such as reactive oxygen species, nitric oxide, neuro-
transmitters, and hormones released during chronic stress.
Microglial proliferation and activation, in turn, increase the
release of various cytokines, kynurenine metabolites, and glu-
tamate, while reducing the release of neurotrophic factors,
monoaminergic transmission, and hippocampal neurogenesis,
which are relevant mechanisms involved in MDD [54].
Increased expression of pro-inflammatory cytokines may in-
crease the activity of the indoleamine 2,3 dioxygenase (IDO)
enzyme, responsible for the degradation of tryptophan, a se-
rotonin precursor. In turn, the IDO activates pro-inflammatory
genes may potentiate neuroinflammation [58]. It is also essen-
tial to consider that stress in early life, a social factor relevantly
involved in the onset and severity of depression throughout
life [50], seems to modify the genetic scheduling related to
inflammatory markers during childhood development, being
one of the pathways that goes modifying the neurophysiolog-
ical and behavioral phenotype, culminating in MDD [59].

Physical Exercise and Health

The regular physical exercise culminates in a variety of health
benefits, such as improvement in cardiovascular and respira-
tory functions, reduced risk factors for coronary heart disease,
and reduced morbidity and mortality. Besides, systematized
and regular physical activity provides more independent

lifestyle in older people, increased sense of well-being, re-
duced risk of falls, preservation, or reduction of functional
limitations in adults and older, effective therapy for many
diseases, and reduction of anxiety and MDD [60, 61]. The
literature points out that physical activity can positively affect
endothelial function and therefore can be considered a rele-
vant factor in the prevention and management of cardiovascu-
lar diseases [62].

In a study of women with type II diabetes mellitus, the
authors observed that the combination of aerobic and resis-
tance exercises was more effective in insulin resistance thera-
py [63]. In a study of older adults diagnosed with diabetes in
comorbidity with depressive symptoms and cognitive impair-
ment, it was verified a correlation of diabetes and comorbid-
ities with less routine physical exercises [64].

In patients with Alzheimer’s disease, moderate aerobic ex-
ercise improved cardiorespiratory fitness, associated with
functional capacity and memory performance benefits [65].
A cohort study showed that large amounts of aerobic exercise
resulted in cardiorespiratory fitness and it was associated with
the highest survival, and the benefits were more significant in
older people and hypertensive individuals [66]. Another study
found that midlife cardiorespiratory fitness resulted in reduced
risk for depression and death from cardiovascular disease after
later-life depression [67].

Exercise as Therapy for MDD

Studies have observed that physical exercise can bring
benefits as adjunctive and individual therapy in the treat-
ment of MDD [68–71] or be a strategy for the prevention
of MDD [72], acting on several biological mechanisms
and culminating in positive effects on synaptic plasticity
and neurogenesis [17, 73]. In a study of patients with mild
to moderately severe depression, the authors observed that
physical exercise induced therapeutic response compara-
ble to treatment with a classic antidepressant drug [21].
Studies analyzing moderate aerobic exercise for 8 weeks
showed cognitive improvements and reduction of depres-
sion rates in MDD patients [74]. Recent research found
that depression was positively related to physical inactiv-
ity in individuals with fibromyalgia [75]. Also, MDD pa-
tients are less engaged in physical activities [76],
exhibiting less cardiorespiratory fitness, increased risk of
metabolic diseases, and premature mortality [77]. There
are evidence and discussion in the scientific literature
about different therapeutic effects, comparing AT and RT
[24]. However, although more studies have demonstrated
the beneficial effects of AT [69], recent studies have noted
that RT also provides antidepressant effects [78]. Despite
the evidence that AT and RT can influence different bio-
logical mechanisms, both seem to exert positive effects on
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some biological mechanism involved in mood disorder
and cognitive processes [24].

At another angle, it is essential to note that a large amount
of acute exercise translates into a stressful event, and the in-
tensity of acute exercise directs the magnitude of stress [79].
Another relevant factor to consider is that the reactivity of
healthy populations is quite variable concerning the same rel-
ative intensity of acute exercise, suggesting differences be-
tween the individuals. However, it appears that improvement
in physical fitness generally reduces psychophysiological re-
activity to psychosocial stressors, culminating in a physical
and mental benefit [80, 81]. Even after a long period of inac-
tivity, an aerobic fitness protocol seems to bring benefits, con-
ferring better function of the HPA axis and the sympathetic
nervous system, reducing activity in both physical and psy-
chosocial stress situations [38].

Exercise, Neurotransmitters, and Signaling Pathways

The exact neurobiological phenomena involved in the thera-
peutic response to physical exercises have not yet been eluci-
dated. However, some neurotransmitters, growth, and tran-
scription factors, and intracellular signaling pathways are the
targets of evidence in some studies [75]. Physical exercise
prevented cognitive and motor impairments associated with
monoaminergic depletion from the administration of reserpine
in rats [82]. Recent studies have shown that physical exercise
promotes increased serum levels of brain-derived neurotroph-
ic factor (BDNF) in MDD patients [72]. BDNF levels were
associated with reduced hypersomnia in MDD patients under-
going an AT-protocol for 12 weeks [83]. Researchers have
shown that serum BDNF levels increased significantly after
acute exercise in women withMDD. However, acute levels of
BDNF have not been correlated with improvements in mood,
suggesting that the therapeutic function of BDNF from exer-
cise may be related to its release during chronic exercise [84].
Protocols with voluntary running wheel exercises restored the
long-term potentiation (LTP) in strains of stress-sensitive rats
and submitted to a schedule of chronic social isolation.
Exercise also reversed the hippocampal reduction of glial glu-
tamate transporter (GLT-1) and GluA2 AMPA-receptor sub-
unit from social isolation. The results of these studies suggest
that physical exercise exerted a protective role on the damag-
ing effects of social isolation on hippocampal LTP [85].

The monoamines, serotonin, noradrenaline, and dopamine
appear to be the three primary neurotransmitters known to be
modulated by physical exercise [86]. Researchers have shown
that sufficient levels of serotonin are required for the activa-
tion of hippocampal neurogenesis after voluntary exercise in
mice. The authors argue that neurogenesis mediated at least in
part by serotonin may be an essential mechanism in the sug-
gested therapeutic effect of physical activity on depression
[87]. Researchers also noted that the bioavailability of

serotonin and noradrenaline in the synaptic cleft seems to be
a crucial requirement for the effect of physical exercise on the
wheel running in reducing depressive-like behaviors in mice
[88]. From another perspective, researchers have found that
sensitized serotonergic activity in the dorsal striatum appears
to be an uncontrollable stress-driven mechanism, to be in-
volved in some underlying behavioral impairments in depres-
sion and can be reduced by exercise through the wheel run-
ning [11]. As reviewed by Nicastro and Greenwood, physical
exercise acts on several structural and functional molecular
mechanisms involving the serotonergic neurotransmission
system and interfering with the adverse changes from stress
[89].

Studies have shown that the wheel running reduces the
increase in firing rate of the noradrenergic neurons of the locus
coeruleus (LC) after chronic stress. The reduced function of
noradrenaline is suggested to be a relevant factor in the circuit
between LC and dorsal raphe nucleus (DRN), contributing to
attenuate the hyperactivation of serotoninergic neurons from
stress [90]. The reduction in the rate of noradrenergic triggers
after wheel running is suggested to be related to an anxiolytic
effect from physical exercise and appears to be stress depen-
dent and auto-inhibitory signaling mediated by specific recep-
tors of peptide galanin, which is co-released from noradrener-
gic neurons of the LC [91]. From another angle, physical
exercise increases the release of noradrenaline in the hippo-
campus [92]. The release and function of noradrenaline in the
hippocampus appears to be at least partially involved in the
expression and function of BDNF on neurogenesis and the
cognitive functions elicited by physical exercise [89].

Considering the role of physical exercise on dopaminergic
neurotransmission, some researchers verified that prolonged
well-running potentiated dopaminergic activity in the dorsal
striatum of rats submitted to uncontrollable acute stress [11].
A hyperdopaminergic brain state appears to emerge from
physical exercise, involving a variety of mechanisms and pos-
sibly triggering a range of structural and functional changes
that confer the benefits of physical exercise on rewarding and
mood behaviors [93].

Markers associated with neurotransmission and
neuroplasticity, such as synapsin 1 and synaptophysin in-
creased in the rat hippocampus, after RT and AT, in parallel
to an improvement in hippocampal-dependent spatial learning
[94]. However, AT preferentially increased the levels of
BDNF and calcium/calmodulin-dependent kinase II
(CaMKII), whereas RT preferentially increased the
phosphorylated-insulin-like growth factor 1 (p-IGF-1) and
Akt (Protein Kinase B) in the hippocampus of the animals.
These findings indicate that both types of physical activity
may exert beneficial effects on hippocampal function, al-
though they have differential preferences for molecular mech-
anisms [94]. On the other hand, it is important to note that
different RT protocols may translate into differences in
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hippocampal neuronal plasticity [95]. According to Nokia
et al. [96], increased hippocampal neurogenesis appears to
occur after AT, but not after RT. However, in the experimental
protocol conducted by Novaes Gomes et al. [97], RT, besides
increasing adult hippocampal neurogenesis, also increased the
expression of the anti-apoptotic protein Bcl-2. Thus, more
studies considering different protocols already investigated
are essential, in the sense of observing neuronal mechanisms
that emerge from the different protocols, as well as the phe-
notypic behavioral expression.

Depression, Exercise, and Inflammation

Although the biological mechanisms underlying the therapeu-
tic effects of physical exercise are still enigmatic for science,
many studies indicate that pro-inflammatory processes are re-
duced [98]. Several studies point out that chronically in-
creased concentration of systemic cytokines such as IL-1β,
TNF-α, IL-6, IL-8, and IL-10 are related to various chronic
diseases and MDD [99–101]. Some researchers argue that
transient fluctuations occurring in cytokine levels in bothmus-
cles and circulation during and after exercise are probably
relevant factors inherent in the benefits of physical exercise
for health [98]. A reduction in baseline IL-1β blood levels
from moderate intensity exercise was predictive of reduced
insomnia in MDD patients [83]. Another study with college
students found that moderate-intensity exercise was more in-
cisive in reducing symptoms of stress and depression, while at
the same time reducing blood levels of TNF-α [102].

Recent studies have observed that physical exercise in the
young phase of life reduced depressive-like behaviors, im-
proved hippocampal mitochondrial function and oxidative
balance, and reduced glucocorticoid levels in the circulation
of animals exposed to synthetic glucocorticoids in the prenatal
stage [50]. These data suggest that physical exercise is in some
way involved in mechanisms of regulation of the HPA axis,
implying in the reorganization of the physiological activities
inherent to the restoration of the oxidative balance and the
reduction of inflammatory processes. Chronic physical exer-
cise, mainly moderate aerobic exercise has an antioxidant
function, and it seems that this action performed by physical
exercise is inherent to its benefit against cardiovascular dis-
eases, among other diseases and disorders [103].

It is noteworthy that levels of some pro-inflammatory cy-
tokines appear to be higher in patients with treatment-resistant
depression (TRD) and that an increase of the circulating basal
TNF-α levels was positively correlated with the antidepres-
sant effect from a 12-week aerobic exercise protocol. Besides,
the reduction of depressive symptoms in TRD patients was
positively correlated with the reduction of IL-1β levels fol-
lowing the chronic exercise protocol [104]. These pieces of
evidence suggest that TRD is linked to severe chronic inflam-
matory conditions and in comorbidity with chronic diseases,

whose pathophysiological mechanisms suffer interference
from physical exercise, culminating in an improvement in
general health conditions. Indeed, researchers point out that
increased inflammation is one of the critical elements of TRD
and represents a common link between depression and poor
overall health in these patients [105].

The benefits of physical exercise can be attributed to the
anti-inflammatory effects, at least partially, from the reduction
of visceral adiposity. These considerations are based on the
fact that adipose tissue is a significant contributor to circulat-
ing levels of IL-6 and TNF-α [106].

Concerning IL-6, studies on the functions of physical ex-
ercise have been observing that the active muscle rapidly in-
creases the release of this cytokine. From these findings, the
authors have been suggesting that IL-6 is also a myokine and
exerts beneficial effects on metabolic functions and against
low-grade inflammation involved in various chronic diseases
[107]. Although IL-6 is considered a pro-inflammatory cyto-
kine, research also points out that IL-6 induces an increase in
anti-inflammatory cytokines such as IL-10 and reduces the
release of other pro-inflammatory cytokines, such as TNF-α
[31, 108].

Exercise, PGC1α, and Inflammation: Function
in the Depression

Some studies indicate that endurance training increases the
release of transcriptional factors, which among other func-
tions, increases PGC1α gene expression, one of the genes
regulated by physical exercises, and that regulates the tran-
scriptional co-activator of peroxisome-proliferator-activated
receptor- γ (PPAR-γ) coactivator 1α, a potent activator of
mitochondrial biogenesis and oxidative metabolism.
Increased expression of the PGC1α gene can increase mito-
chondrial density and myofibrillar proteins of muscle fibers,
where oxidative metabolism predominates [98, 109, 110].
PGC1α is also a highly conserved co-activator of transcription
factors and is heavily involved in the preservation and protec-
tion against neuronal loss [111]. A noteworthy factor observed
in various experimental protocols is that PGC1α gene expres-
sion appears to correlate positively with the reduction of in-
flammatory proteins, such as IL-6 and TNF-α [112]. Another
critical factor that should synergistically be acting is the fact
that PGC1α interferes in mechanisms that reduce oxidative
stress [113, 114], considering that reactive oxygen species
are known to induce the increase of inflammatory cytokines
[115, 116]. An equally ormore prominent phenomenon comes
from research, which has observed that PGC1α promotes the
conversion of peripheral kynurenine to kynurenic acid, a com-
pound of the pathway, which, unlike kynurenine, does not
c ros s the b lood-b ra in ba r r i e r, t hus p reven t ing
neuroinflammatory effects from the metabolism of
kynurenine in the brain. The authors verified that PGC1α
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prevented depressive-like behavior induced by chronic stress
in mice by preventing the action of kynurenine in brain re-
gions such as the hippocampus [117]. The pathway of trypto-
phan metabolism, spanning the formation of kynurenine and
quinolinic acid, is a toxic pathway and is involved in a range
of neurodegenerative diseases and psychiatric disorders, in-
cluding MDD [101, 118]. The balance between the toxic met-
abolic pathway and the kynurenine pathway, which is shown
to be neuroprotective seems to be a phenomenon to be con-
sidered in research that looks at mechanisms for therapeutic
intervention inMDD. New protocols of research with animals
and human patients have been highlighting the involvement of
this pathway in neuroinflammation and other mechanisms un-
derlying the depressive disorder [119–123]. The toxicity asso-
ciated with the kynurenine pathway is primarily understood as
the balance between the excitotoxicity exerted by quinolinic
acid, an N-methyl-D-aspartate (NMDA) glutamatergic recep-
tor agonist, and the neuroprotection exerted by kynurenic ac-
id, a 27-nicotinic cholinergic and NMDA receptor antagonist
[123]. Notwithstanding other forms of intervention on trypto-
phan metabolism, research observing the effects of endurance
training deserves further study [122, 124].

Exercise, Inflammation, Neurotransmission,
and Depression

An expressive range of research has shown that there is an
interaction between a reduction of peripheral inflammation
and neuroinflammation, better performance of neurotransmis-
sion and brain plasticity, associated with a reduction of depres-
sion after physical exercise [24]. Persistent low-grade inflam-
mation interferes with the regulation and consequent function
of neurotransmitters related to emotions, as well as induces
hormonal changes similar to the variations that occur after
stress [32].

Studies with animal models observed that the association
of a complex diet, aiming the reduction of inflammation and
oxidative stress, together with physical exercises, reduced the
anhedonic behavior and induced an increase in mRNA levels
for BDNF and hippocampal neurogenesis in mice submitted
to chronic stress [125].

Voluntary wheel running reversed the increase in circulat-
ing corticosterone levels and the reduction of the hippocampal
glucocorticoid receptor (GR) and BDNF mRNA, in parallel
with a reduction in anhedonic behaviors and spatial cognitive
performance impairment of rats undergoing chronic stress
[126]. Running wheel increases cognitive performance in par-
allel to neuronal and astrocytic plasticity in brain regions in-
volved with depression and cognition, such as the hippocam-
pus and PFC [127].

By registering the serotonergic neurotransmission, exten-
sive connection with several mechanisms associates physical
activity with immune and inflammatory mechanisms in the

restoration or improvement of serotonergic neurotransmission
and, consequently, of the therapeutic function in MDD.
Increased GABAergic inhibitory tonus caused by IL-1β in
the dorsal raphe nucleus inhibits the firing of the serotonergic
pathway to the limbic system [128]. Chronic increase of pro-
inflammatory cytokines induces variations in serotonin trans-
porter activity, modulating serotonin levels at neuronal termi-
nation [129]. The downregulation of IDO activity by varying
the metabolism of kynurenine to the production of neuropro-
tective metabolites, such as kynurenic acid, in detriment of
neurotoxic metabolic synthesis, such as quinolinic acid, is
one of the important functions in the metabolism of trypto-
phan and serotonergic neurotransmission [130]. In addition to
the deviation of metabolic activity, a reduction in the activity
of IDO reduces the degradation of tryptophan, the precursor of
the neurotransmitter serotonin [131]. Regarding this condi-
tion, it is essential to emphasize that physical activity increases
the amount of free tryptophan peripherally, allowing an in-
crease in the flow of tryptophan to the central nervous system
[23].

About noradrenergic neurotransmission, researchers have
shown that exercise reduces the levels of proinflammatory
cytokines, improves the oxidative balance profile while re-
versing the imbalance between inhibitory and excitatory neu-
rotransmission on noradrenergic hyperactivity in hypertensive
animals from high salt intake [132]. The balance of noradren-
ergic neurotransmission is important, considering that the bas-
al levels of noradrenaline seem to inhibit the release of proin-
flammatory cytokines from the microglia [133, 134].

In a model of immune challenge through lipopolysaccha-
ride (LPS), chronic treadmill exerted a protective effect on the
dopaminergic neuronal loss in the substantia nigra, induced by
inflammation and microglial activation. The protective effect
of exercise occurred through the activation of the BDNF-TrkB
signaling pathway and not due to the modulation of inflam-
mation and microglial activation [135]. Dopaminergic injury
in the nucleus accumbens (NAc) induced by inflammation
also appears to be a protective target by physical exercise
[23]. It is important to note that the NAc is a critical region
of the mesolimbic reward pathway [136]. Thus, the protective
effect of physical exercise on the NAc or another region of the
pathway may play an essential role in the treatment of MDD.

With the registration to the glutamatergic neurotransmis-
sion, the deregulation of the kynurenine balance, producing
an increase in the release of quinolinic acid from an increase of
inflammatory cytokines, is a neurotoxic pathway, given the
increased activation of glutamatergic NMDA receptors
[124]. The activation and apoptosis of astrocytes also occur
from the increase of activation of NMDA receptors, which
may predispose to harmful positive feedback, due to the loss
of astrocytes and reduction in glutamatergic reuptake, in ad-
dition to damage in other mechanisms of astrocytic protection.
In addition to astrocytic damage, immune-glutamatergic-
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astrocytic dysregulation is involved in reduced expression of
various trophic factors, culminating in neuronal loss and de-
pression [137].

Final Considerations and Future Directions

Studies to date indicate that physical exercise may be a ther-
apeutic strategy individual or adjunctive to other therapeutic
forms used in MDD [69, 70].

Biological mechanisms triggered by physical exercise are
diverse, involving interference in neural circuits in the limbic
system and invoking changes in neurotransmission systems
that are in some way related to depressive disorders. The path-
ways through which physical exercise can interact with limbic
neuronal circuits are still poorly understood. However, remote
and recent studies highlight that an interaction network in-
volving HPA axis, oxidative balance, immune system, and
inflammation seems to be the main actor involved in the com-
munication of physical exercise with the nervous system and
the consequent benefits of physical exercise as an antidepres-
sant therapy, especially in individuals who present depression
in comorbidity with inflammation or diseases with chronic
inflammation, such as type 2 diabetes mellitus [23].

In addition to investigating the interaction of inflammatory
cytokines, coupled with functional mechanisms inherent to
neuronal signaling in regions and limbic brain circuits, it is
essential to consider other biological markers that emerge
from physical exercise, such as PGC1α, which underlies a
range of biological changes that target the benefits of antide-
pressant therapy (Fig. 2). Among the biological mechanisms
already evidenced from PGC1α is the balance of the
kynurenine pathway. For example, PGC1α together with
PPARα/δ increases kynurenine aminotransferase (KAT) en-
zyme expression thereby swerving the synthesis of quinolinic
acid to kynurenic acid and thereby protecting the brain from
the neurotoxic actions promoted by quinolinic acid [118].
Increased PGC1α gene expression in skeletal muscle pro-
motes stress resilience in mice [117]. Moreover, PGC1α is
related to the reduction of oxidative stress and inflammatory
cytokines, these being biological mechanisms already
highlighted because they are involved in neurotoxicity and
MDD.

Therefore, protocols of physical exercises in humans with
MDD, as well as experimental protocols of chronic stress and
physical exercises in laboratory animals, to investigate the
interrelationship betweenmediators that emerge from physical
exercise, inflammation, and interaction with circuits cerebral,
neurotransmitter systems, and neuronal and glial signaling

Fig. 2 Transcriptional and anti-inflammatory mechanisms of physical
exercise in the antidepressant function. Physical exercise increases the
expression of the transcriptional co-activator of peroxisome-proliferator-
activated receptor- γ (PPAR-γ) coactivator 1α, (PGC1α). In addition to
the effects on muscle energy metabolism, PGC1α is potentially involved
in the protection of neuronal loss. Increased PGC1α expression is related
to a reduction of oxidative stress and pro-inflammatory cytokines, such as
IL-6 and TNF-α. PGC1α, together with PPARα/δ, promotes the synthe-
sis of kynurenic acid by increasing the expression of kynurenine amino-
transferase (KAT) enzyme. In this way, PGC1α reduces the production of

quinolinic acid, an NMDA receptor agonist, and therefore reduces gluta-
matergic excitotoxicity. Kynurenic acid does not cross the blood-brain
barrier. Thus, by diverting the metabolism of tryptophan and kynurenine,
PGC1α reduces the deleterious effects of kynurenine in the brain. The
reduction of proinflammatory cytokines also reduces the activity of the
indoleamine 2,3 dioxygenase (IDO) enzyme and, therefore, the degrada-
tion of tryptophan, increasing its availability and consequently, the avail-
ability of the serotonin neurotransmitter. Since IDO activates pro-
inflammatory genes, its reduction also culminates in reduced
neuroinflammation
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pathways, are incredibly relevant. These protocols can add
light to therapeutic strategies and target study markers.
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